机器学习系列-Locally weighted linear regression(2)

本文介绍了局部加权线性回归(Locally Weighted Linear Regression, LWLR)的基本概念,并通过Python展示了其实现过程。文章首先概述了LWLR的理论,然后详细解释了使用Python进行LWLR的代码实现,包括权重矩阵的创建和回归系数的计算。通过调整权重参数K,探讨了不同K值对模型拟合效果的影响,展示了一条从过拟合到适配大多数数据点的曲线变化过程。" 113637908,10295422,PostgreSQL 10 集群配置与PGPOOL-II使用详解,"['数据库', 'PostgreSQL', '集群', 'PGPOOL-II', 'Linux调优']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习
这是记录自学的过程,目前的理论基础就是:大学高等数学+线性代数+概率论。编程基础:C/C++,python
在观 看机器学习实战这本书,慢慢介入。相信有读过以上三门课的人完全可以开始自学机器学习了,当然我上面这三门课学的一般,所以你只知道有这么一个公式或名词,不懂可以百度之深究之。在写这篇文章的时候作者机器学习还没学完,故文章中的错误还请不吝指出。再次声明,系列文章只是分享学习过程,学习点滴,不能保证文章的技术含量。后续再技术的不断完善中,我会重新再捋一遍这个学习过程,纠正其中错误。
目前的学习方法如下:
理论:斯坦福Andrew NG machine learning,系列课程。
代码实战:引用书籍 机器学习实战(python)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值