BZOJ 2037 Sue的小球 (基于未来状态的区间dp)

2037: [Sdoi2008]Sue的小球

Time Limit: 10 Sec Memory Limit: 64 MB
Description

Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船。然而,Sue的目标并不是当一个海盗,而是要收集空中漂浮的彩蛋,Sue有一个秘密武器,只要她将小船划到一个彩蛋的正下方,然后使用秘密武器便可以在瞬间收集到这个彩蛋。然而,彩蛋有一个魅力值,这个魅力值会随着彩蛋在空中降落的时间而降低,Sue要想得到更多的分数,必须尽量在魅力值高的时候收集这个彩蛋,而如果一个彩蛋掉入海中,它的魅力值将会变成一个负数,但这并不影响Sue的兴趣,因为每一个彩蛋都是不同的,Sue希望收集到所有的彩蛋。 然而Sandy就没有Sue那么浪漫了,Sandy希望得到尽可能多的分数,为了解决这个问题,他先将这个游戏抽象成了如下模型: 以Sue的初始位置所在水平面作为x轴。 一开始空中有N个彩蛋,对于第i个彩蛋,他的初始位置用整数坐标(xi, yi)表示,游戏开始后,它匀速沿y轴负方向下落,速度为vi单位距离/单位时间。Sue的初始位置为(x0, 0),Sue可以沿x轴的正方向或负方向移动,Sue的移动速度是1单位距离/单位时间,使用秘密武器得到一个彩蛋是瞬间的,得分为当前彩蛋的y坐标的千分之一。 现在,Sue和Sandy请你来帮忙,为了满足Sue和Sandy各自的目标,你决定在收集到所有彩蛋的基础上,得到的分数最高。

Input

第一行为两个整数N, x0用一个空格分隔,表示彩蛋个数与Sue的初始位置。 第二行为N个整数xi,每两个数用一个空格分隔,第i个数表示第i个彩蛋的初始横坐标。 第三行为N个整数yi,每两个数用一个空格分隔,第i个数表示第i个彩蛋的初始纵坐标。 第四行为N个整数vi,每两个数用一个空格分隔,第i个数表示第i个彩蛋匀速沿y轴负方向下落的的速度。

Output

一个实数,保留三位小数,为收集所有彩蛋的基础上,可以得到最高的分数。

Sample Input

3 0
-4 -2 2
22 30 26
1 9 8

Sample Output

0.000

数据范围:

N < = 1000,对于100%的数据。 -10^4 < = xi,yi,vi < = 10^4

题意:在 x 轴上有 N 个坐标为 (xi,0) 的小球 ,每个小球有一个权值 ti ,每过一个单位时间权值会减少 vi,初始时你的坐标为 (0,0),移动一个单位距离需要花费一个单位时间。到一个小球时可以选择获得这个小球此时的权值(以后经过这个小球不会再获得权值),问获得所有小球时权值和最大是多少。得分为当前点的y坐标的千分之一。

思路:
考虑区间转移,获得权值的小球是一个区间,用 f[i][j][0/1] 定义为处理第 i 个小球到第 j 个小球后的状态(01表示左端点右端点,可以贪心)。
考虑到一个小球被获得时的权值并不能很容易地被计算,而每个小球都必须获得,那么就假设我们都先获得了,然后转移时减去此时减少的权值即可。贪心的考虑,走过的地方一定处理完了,所以区间是连续的,f[i][j]只能由f[i+1][j],f[i][j-1] 转移过来

算法合集之《对一类动态规划问题的研究》

#include <iostream>
#include <cstdio>  
#include <algorithm>  
#define N 1010 
using namespace std;  

int n, x0;
int sum[N], f[N][N][2];  

struct AA{  
    int x, y, v;  
}a[N];  

bool cmp( AA a, AA b ){ 
    return a.x==b.x ? a.y < b.y : a.x < b.x; 
}  

int main(){  
    scanf("%d%d", &n, &x0);  
    for(int i=1; i<=n; i++) scanf("%d", &a[i].x);  
    for(int i=1; i<=n; i++) scanf("%d", &a[i].y);  
    for(int i=1; i<=n; i++) scanf("%d", &a[i].v);  
    sort(a+1, a+n+1, cmp);  
    for(int i=1; i<=n; i++) sum[i] = sum[i-1] + a[i].v;  
    for(int i=1; i<=n; i++) f[i][i][1] = f[i][i][0] = a[i].y - abs(x0 - a[i].x) * sum[n];//先获得 
    for(int i=2; i<=n; i++)  
        for(int j=1; j+i-1<=n; j++){  
            int k = j + i - 1;//贪心的考虑,走过的地方一定处理完了,所以区间是连续的 
            f[j][k][0] = max(f[j+1][k][1] + a[j].y - (sum[n] - sum[k] + sum[j]) * (abs(a[k].x-a[j].x)), f[j+1][k][0] + a[j].y - (sum[n] - sum[k] + sum[j]) * (abs(a[j+1].x - a[j].x)));  
            f[j][k][1] = max(f[j][k-1][1] + a[k].y - (sum[n] - sum[k-1] + sum[j-1]) * (abs(a[k].x-a[k-1].x)), f[j][k-1][0] + a[k].y - (sum[n] - sum[k-1] + sum[j-1]) * (abs(a[k].x - a[j].x)));  
        }  
    printf("%.3lf", (double) max(f[1][n][1], f[1][n][0]) / 1000.0);  
    return 0;  
}  
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值