题意:
给你n张卡片,每张卡片都有正反a,b两种颜色,问你至少需要反转多少次才能使正面的一样的颜色超过一半以上。
思路:
统计下每种颜色的个数,只有当一种颜色的个数>=(n+1)/2时我们才考虑它,然后判定下该颜色在正面的个数是否>=(n+1)/2如果大于不需要反转,如果小于则需要反转至少
(n+1)/2-在正面的个数,然后不断维护这个的最小值。
#include<cstdio>
#include<map>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAX=1e5+5;
int n,a[MAX],b[MAX];
map<int,int> sum,l;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i],&b[i]);
sum[a[i]]++;
if(a[i]!=b[i]) sum[b[i]]++;
l[a[i]]++;
}
int ans=INF,Max=(n+1)/2;
for(int i=1;i<=n;i++){
if(sum[a[i]]>=Max){
if(l[a[i]]>=Max){
ans=0;
break;
}
else ans=min(ans,Max-l[a[i]]);
}
if(sum[b[i]]>=Max){
if(l[b[i]]>=Max){
ans=0;
break;
}
else ans=min(ans,Max-l[b[i]]);
}
}
if(ans!=INF) printf("%d\n",ans);
else printf("-1\n");
return 0;
}