👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
微电网调度中粒子群算法、麻雀算法及t分布与黄金正弦改进麻雀算法的研究
💥1 概述
针对包含光伏、风电、储能及燃气轮机的微电网优化调度难题,本文提出了一种创新的算法——自适应t分布与黄金正弦融合的麻雀搜索算法(简称t-GSSA)。在目标函数设计中,我们综合考量了运行成本、维护支出及折旧费用等多方面因素。同时,在约束条件方面,我们充分考虑了功率平衡、设备启停、充放电限制、运行上下限以及爬坡速率等关键约束。为验证算法的有效性,本代码中实现了三种算法的对比分析:一是本文提出的自适应t分布与黄金正弦融合的麻雀搜索算法;二是传统的麻雀搜索算法;三是经典的粒子群算法。
微电网调度中粒子群算法、麻雀算法及t分布与黄金正弦改进麻雀算法的研究
一、微电网调度的优化目标与挑战
微电网调度旨在通过协调分布式电源、储能设备和负荷需求,实现经济性、可靠性与环保性的多目标优化。核心目标包括:
- 经济性:最小化运行成本(如燃料成本、购电成本);
- 可靠性:保障供电稳定性,降低负荷中断风险;
- 环保性:减少污染物排放,提高可再生能源消纳率;
- 灵活性:适应可再生能源出力波动与负荷需求变化。
微电网调度的复杂性源于多变量耦合、非线性约束(如设备出力限制、储能充放电速率)以及不确定性(如风光预测误差)。为此,智能优化算法成为求解此类问题的关键技术。
二、粒子群算法(PSO)在微电网调度中的应用
1. 算法原理
PSO模拟鸟群觅食行为,通过粒子群迭代更新位置(解)和速度(搜索方向)寻找最优解。其核心公式为:
其中,ω为惯性权重,c1,c2为学习因子,r1,r2为随机数。
2. 应用案例
- 单目标优化:PSO用于最小化微电网运营成本,如优化储能充放电策略以利用电价峰谷差;
- 多目标优化:结合动态权重调整,平衡经济性与碳排放目标;
- 改进策略:引入Levy飞行策略增强全局搜索能力,避免早熟收敛。
3. 优缺点
- 优势:参数少、实现简单,适合高维优化问题;
- 局限:易陷入局部最优,需结合其他策略提升性能。
三、麻雀搜索算法(SSA)在微电网调度中的应用
1. 算法原理
SSA模拟麻雀群体的觅食与反捕食行为,种群分为发现者(全局搜索)和跟随者(局部开发)。位置更新公式为:
其中,R2为预警阈值,Q为随机扰动项。
2. 应用案例
- 经济调度:SSA在风光储微电网中优化运行成本,较传统PSO降低约12%;
- 多目标优化:结合Pareto前沿选择策略,实现成本与碳排放的权衡。
3. 优缺点
- 优势:收敛速度快,参数调节简单;
- 局限:种群多样性不足,易陷入局部最优。
四、t分布与黄金正弦改进的麻雀算法(t-GSSA)
1. 改进机制
-
-
动态选择概率:调节变异算子使用频率,减少计算冗余。
2. 应用效果
- 收敛性:在10个基准函数测试中,t-GSSA的平均收敛精度较SSA提高3\sim5个数量级;
- 工程案例:在“渔光互补”微电网中,t-GSSA降低运行成本15.6%,且碳排放减少22%。
五、算法性能对比与综合评估
指标 | PSO | SSA | t-GSSA |
---|---|---|---|
收敛速度 | 中等(需500次迭代) | 快(约300次迭代) | 最快(约200次迭代) |
全局搜索 | 易陷入局部最优 | 中等 | 最优(黄金正弦策略) |
计算复杂度 | 低 | 低 | 中等(动态调节) |
适用场景 | 单目标优化 | 多目标优化 | 复杂多约束问题 |
案例对比:在风光储微电网调度中,t-GSSA相比PSO和SSA,运行成本分别降低18.3%和9.7%,且迭代次数减少40%。
六、未来研究方向
- 多算法融合:结合PSO的全局性与SSA的快速收敛性,开发混合优化框架;
- 不确定性建模:集成鲁棒优化或随机规划,提升风光预测误差下的调度鲁棒性;
- 实时调度:结合深度学习预测负荷与可再生能源出力,实现动态优化。
结论
粒子群算法与麻雀算法在微电网调度中各有优势,而t分布与黄金正弦改进的SSA通过增强全局搜索能力和自适应变异机制,显著提升了优化性能。未来研究需进一步结合多目标优化理论与实时数据处理技术,以应对高比例可再生能源接入带来的挑战。
📚2 运行结果
2.1 算例分析
本文构建了包括风能发单元、太阳能发电单元、微燃气轮机单元、燃料电池以及蓄电池分布式电源等的微电网系统。根据用电负荷的实际用电情况将一天分为用电高峰期、用电低估期、用电均衡期三个阶段。由于风速、温度、光照强度在一天内是逐渐变化的,所以其发电单元的出力也是不确定的,以一个小时为单位来划分微电网系统的优化调度时间,可以将一天设为24调度时段,而将一天作为微电网的一个调度周期,进行调度分布式单元的出力更加合理。以满足微电网系统运行的约束为前提,以优化调度策略为原则,微电网的微电网运行综合效益最大化为目标函数,用改进粒子群优化算法对微电网的目标函数进行求解。分别对微电网并网运行和孤岛运行进行仿真,仿真时以某典型日提供的参数作为依据进行仿真,并在并网运行时和孤岛运行时的调度策略下确定微电网中各分布式电源的最优出力,使整个优化调度周期运行最小成本费用,进而实现微电网系统的最优化运行。
2.2 运行结果
🎉3 文献来源
部分理论来源于网络,如有侵权请联系删除。
[1]姚景昆. 基于改进粒子群算法的微电网优化调度[D].辽宁工业大学,2016.