[leetcode] 1260. Shift 2D Grid

Description

Given a 2D grid of size m x n and an integer k. You need to shift the grid k times.

In one shift operation:

  • Element at grid[i][j] moves to grid[i][j + 1].
  • Element at grid[i][n - 1] moves to grid[i + 1][0].
  • Element at grid[m - 1][n - 1] moves to grid[0][0].
    Return the 2D grid after applying shift operation k times.

Example 1:

Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1
Output: [[9,1,2],[3,4,5],[6,7,8]]

Example 2:

Input: grid = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
Output: [[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]

Example 3:

Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 9
Output: [[1,2,3],[4,5,6],[7,8,9]]

Constraints:

  1. m == grid.length
  2. n == grid[i].length
  3. 1 <= m <= 50
  4. 1 <= n <= 50
  5. -1000 <= grid[i][j] <= 1000
  6. 0 <= k <= 100

分析

题目的意思是:给你一个矩阵,把这个矩阵移动K步的输出是啥,描述可能不够准确,在纸上画一下应该就清楚了。我这里用的方法也比较简单,计算所有坐标最终移动到的位置,然后遍历赋值就行了,计算坐标的方法是最核心的,思路很直接。

代码

class Solution:
    def shiftGrid(self, grid: List[List[int]], k: int) -> List[List[int]]:
        m=len(grid)
        n=len(grid[0])
        grid1=[[0 for i in range(n)] for j in range(m)]
        for i in range(m):
            for j in range(n):
                x=(i+(j+k)//n)%m
                y=(j+k)%n
                grid1[x][y]=grid[i][j]
        return grid1
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页