OpenAI支持function calling的模型

最近在梳理function calling的模型,所以特地了解了一下openai支持function calling的模型:
支持function calling的模型版本:gpt-4o, gpt-4o-2024-08-06, gpt-4o-2024-05-13, gpt-4o-mini, gpt-4o-mini-2024-07-18, gpt-4-turbo, gpt-4-turbo-2024-04-09, gpt-4-turbo-preview, gpt-4-0125-preview, gpt-4-1106-preview, gpt-4, gpt-4-0613, gpt-3.5-turbo, gpt-3.5-turbo-0125, gpt-3.5-turbo-1106, and gpt-3.5-turbo-0613.

支持并行function calling的模型版本:
gpt-4o, gpt-4o-2024-08-06, gpt-4o-2024-05-13, gpt-4o-mini, gpt-4o-mini-2024-07-18, gpt-4-turbo, gpt-4-turbo-2024-04-09, gpt-4-turbo-preview, gpt-4-0125-preview, gpt-4-1106-preview, gpt-3.5-turbo, gpt-3.5-turbo-0125, and gpt-3.5-turbo-1106.

参考文献

open ai function calling

### 如何在Spring框架中调用AI函数 为了在Spring框架内集成并调用AI功能,开发者可以利用`spring-ai`模块来简化这一过程。通过设置特定属性如API密钥以及模型选项,应用程序能够轻松访问外部的人工智能服务。 配置文件中的相关设定如下所示: ```properties spring.ai.openai.api-key=YOUR_API_KEY spring.ai.openai.embedding.options.model=text-embedding-ada-002[^1] ``` 上述配置允许应用连接到OpenAI的服务,并指定使用名为`text-embedding-ada-002`的预训练模型来进行文本嵌入操作。这使得开发人员可以在项目里实现自然语言处理的任务,比如语义相似度计算或是基于内容的推荐系统构建等高级特性。 对于希望进一步增强解释性的AI交互体验的应用程序而言,研究也提供了有价值的见解。例如,在计算机视觉领域的工作展示了如何让机器学习模型不仅给出预测结果还能提供背后的原因说明,从而提高了系统的透明性和可信度[^2]。 当涉及到具体编码实践时,假设已经完成了必要的依赖引入和环境搭建工作,则可以通过注入相应的客户端组件实例化对象并与之互动的方式完成对AI能力的调用。下面是一个简单的Java代码片段展示怎样创建一个REST控制器方法用于触发AI任务执行: ```java @RestController @RequestMapping("/api/ai") public class AiController { private final OpenAIClient openAiClient; @Autowired public AiController(OpenAIClient openAiClient) { this.openAiClient = openAiClient; } @PostMapping("/embeddings") ResponseEntity<String> getEmbedding(@RequestBody String text){ EmbeddingRequest request = new EmbeddingRequest(text); EmbeddingResponse response = openAiClient.createEmbedding(request); return ResponseEntity.ok(response.toString()); } } ``` 这段代码定义了一个接受POST请求的端点 `/api/ai/embeddings` ,它接收一段文字作为输入参数并通过`openAiClient`发送给远程服务器获取对应的向量表示形式作为响应返回给前端使用者。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值