[leetcode] 1594. Maximum Non Negative Product in a Matrix

Description

You are given a rows x cols matrix grid. Initially, you are located at the top-left corner (0, 0), and in each step, you can only move right or down in the matrix.

Among all possible paths starting from the top-left corner (0, 0) and ending in the bottom-right corner (rows - 1, cols - 1), find the path with the maximum non-negative product. The product of a path is the product of all integers in the grid cells visited along the path.

Return the maximum non-negative product modulo 109 + 7. If the maximum product is negative return -1.

Notice that the modulo is performed after getting the maximum product.

Example 1:

Input: grid = [[-1,-2,-3],
               [-2,-3,-3],
               [-3,-3,-2]]
Output: -1
Explanation: It's not possible to get non-negative product in the path from (0, 0) to (2, 2), so return -1.

Example 2:

Input: grid = [[1,-2,1],
               [1,-2,1],
               [3,-4,1]]
Output: 8
Explanation: Maximum non-negative product is in bold (1 * 1 * -2 * -4 * 1 = 8).

Example 3:

Input: grid = [[1, 3],
               [0,-4]]
Output: 0
Explanation: Maximum non-negative product is in bold (1 * 0 * -4 = 0).

Example 4:

Input: grid = [[ 1, 4,4,0],
               [-2, 0,0,1],
               [ 1,-1,1,1]]
Output: 2
Explanation: Maximum non-negative product is in bold (1 * -2 * 1 * -1 * 1 * 1 = 2).

Constraints:

  • 1 <= rows, cols <= 15
  • -4 <= grid[i][j] <= 4

分析

题目的意思是:求矩阵从左上角到右下角最大非负乘积,如果为负数,则返回-1.这道题显然需要用动态规划,由于有负数,所以需要用两个dp数组,dp_max记录当前乘积的最大值,dp_min记录乘积的最小值。然后写一个双循环遍历更新dp_max和dp_min就行了。

dp_max[i][j]=max(dp_max[i-1][j]*grid[i][j],dp_max[i][j-1]*grid[i][j])
dp_max[i][j]=max(dp_max[i][j],dp_min[i-1][j]*grid[i][j],dp_min[i][j-1]*grid[i][j]) 
dp_min[i][j]=min(dp_max[i-1][j]*grid[i][j],dp_max[i][j-1]*grid[i][j])
dp_min[i][j]=min(dp_min[i][j],dp_min[i-1][j]*grid[i][j],dp_min[i][j-1]*grid[i][j])

代码

class Solution:
    def maxProductPath(self, grid: List[List[int]]) -> int:
        row=len(grid)
        col=len(grid[0])
        dp_max=[[0]*col for i in range(row)]
        dp_min=[[0]*col for i in range(row)]
        dp_max[0][0]=dp_min[0][0]=grid[0][0]
        for i in range(1,row):
            dp_max[i][0]=dp_max[i-1][0]*grid[i][0]
            dp_min[i][0]=dp_min[i-1][0]*grid[i][0]
            
        for i in range(1,col):
            dp_max[0][i]=dp_max[0][i-1]*grid[0][i]
            dp_min[0][i]=dp_min[0][i-1]*grid[0][i]
            
        for i in range(1,row):
            for j in range(1,col):
                dp_max[i][j]=max(dp_max[i-1][j]*grid[i][j],dp_max[i][j-1]*grid[i][j])
                dp_max[i][j]=max(dp_max[i][j],dp_min[i-1][j]*grid[i][j],dp_min[i][j-1]*grid[i][j]) 
                dp_min[i][j]=min(dp_max[i-1][j]*grid[i][j],dp_max[i][j-1]*grid[i][j])
                dp_min[i][j]=min(dp_min[i][j],dp_min[i-1][j]*grid[i][j],dp_min[i][j-1]*grid[i][j])
        if(dp_max[row-1][col-1]>=0):
            return dp_max[row-1][col-1]%(10**9+7)
        return -1

参考文献

1594 矩阵的最大非负积(动态规划)

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页