注意 :用于求方阵的行列式值
1.2 矩阵的秩
矩阵的秩是矩阵的列向量组(或行向量组) 的任一极大线性无关组所含向量的个数。
运算符 : rank( )
1.3 矩阵的迹
矩阵的迹等于矩阵主对角线元素的总和。也等于矩阵特征值的总和。
运算符 : trace( )
注意 :要求矩阵是方阵
1.4 矩阵的特征值分析
E=eig(A ):
求矩阵A的全部特征值,并构成向量E
[V,D]=eig(A ):
求矩阵 A 的全部特征值,构成对角矩阵D ;求 A 的特征向量构成列向量V 。
A=[1, - 2,3;2,3,1;3, - 1, - 1]
B=det(A)
C=rank(A)
D=trace(A)
E=eig(A)
[V,D]=eig(A)
A1=[1,2,3;4,5,6]
B1=det(A1)
C1=trace(A1)
2 矩阵的逆与线性方程组求解
2.1 矩阵的逆
inv( )
用于求满秩方阵的逆
pinv( ) 用于求不是方阵或非满秩方阵的
逆—— 伪逆
如果 ABA=A , BAB=B ,则称 B 为 A 的
伪逆,或广义逆矩阵。
2.2 线性方程组求解
AX=B X= )*B
X = inv ( A )* B
X = inv(A)*B= A\ B (矩阵左除)
3 矩阵的分解与变换
3.1 矩阵的分解
三角分解(方阵): [l,u]=lu(a)
正交分解: [q,r]=qr(a)
a(n,m)
q : n 阶正交方阵
r :与 a 同阶的上三角矩阵
奇异值分解: [u,s,v]=svd(a)
u : n 阶正交方阵
s : n × m 阶的对角阵,对角线元素为 a
的奇异值,长度为n、 m 的较小者
v : m 阶正交方阵
3.2 矩阵的变换
矩阵的共轭转置:’
矩阵的共轭: conj
矩阵的转置: conj’
复数矩阵的赋值
对元素逐个赋值:
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)
_convert/9f49b566129f47b8a67243c1008edf79.png)
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)