【初等概率论】 03

本文介绍了概率论中的常见分布,包括伯努利试验、泊松过程,以及它们在实际问题中的应用,如三门问题、分赌注问题和随机游动问题。伯努利试验是随机事件的基础,泊松过程则描述了连续场景下的随机事件。通过这些基础知识,可以解决一系列有趣的概率问题。

1. 常见分布

  这里讨论几个常见的概率分布,而它们之间存在着紧密的关联。很多复杂的概率模型其实有着更简单的底层原理,这种联系再次验证了随机现象的确定性方面。看似复杂随机现象其实就是由许多“原子事件”组合而成,数学的规律仍然起着支配作用。

1.1 伯努利试验

  最简单且有意义的事件域是\(\mathscr{F}=\{\varnothing,A,\bar{A},\Omega\}\),我们关心的只有事件\(A\)是否发生,这样的随机事件称为伯努利试验。伯努利试验是最简单的随机事件,但你将看到,它几乎可以看成是随机世界的“原子事件”,众多的伯努利试验在一起,就能够变幻出无穷的可能。为了便于讨论,以下记\(P(A)=p,P(\bar{A})=q\),它也是伯努利试验的概率分布。

  单个伯努利试验是平凡的,接下来研究可数个独立伯努利试验组成的随机事件,研究的方法是从空间和时间两个角度着手。至于空间角度,就是\(n\)次伯努利试验中\(A\)发生的次数\(k\),这是大家熟悉的二项分布(1),因为它是二项式\((ps+q)^n\)中\(s^k\)的系数。利用简单的比较法可知,二项分布在\([0,n]\)上先增后减,并且在\([(n+1)p]\)上取得最大值(中心项)。

\[b(k;n,p)=\binom{n}{k}p^kq^{n-k}\tag{1}\]

  再从时间角度看,考察\(A\)第一次发生在第\(k\)次试验的概率,容易算得是式(2)左的等比数列,故它也被称为几何分布。几何分布是描述时间的随机变量,由于每次伯努利试验是独立的,可以想象已经过去的时间\(m\)并不会影响还需等待的时间\(k\)。即几何分布满足式(2)右的性质,它被称为几何分布的无记忆性。这是几何分布的核心性质,还可以证明,满足无记忆性的离散分布只有几何分布。

\[g(k;p)=q^{k-1}p;\;\;P\{\xi=m+k|\xi>m\}=P\{\xi=k\}\tag{2}\]

  继而再来看\(A\)第\(r\)次发生的时间,容易知道它是式(3)左的帕斯卡分布。根据几何分布的无记忆性,容易想到,帕斯卡分布的随机变量\(\eta\)其实就是\(r\)个独立同分布的几何分布之和,即\(\eta=\xi_1+\cdots+\xi_r\)。另外,如果以失败次数\(\zeta=\eta-r\)为随机变量,可以得到一个更简单的式(3)右,它称为负二项分布,本质上和帕斯卡分布是一样的。

\[f(k;r,p)=\binom{k-1}{r-1}p^rq^{k-r};\;\;Nb(l;r,p)=\binom{-r}{l}p^r(-q)^l\tag{3}\]

1.2 泊松过程

  由伯努利试验生成的都是离散分布,试图以此研究连续分布看似是不可能的。观察二项分布(1),随着

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值