【初等概率论】 05

1. 极限定理

  至现在为止,概率论仿佛还算简单,只是把一些直观的东西用数学语言表达出来而已。当有了实变和泛函的基础后,你会发现概率论只是分析学的一个普通特例,故更丰富的内容还需我们提升之后再去欣赏。概率论中很多极限问题,一度成为其核心课题,它们不仅发掘了更多有趣的结论,更是解释了很多深层的随机现象。极限定理需要很多高级的分析学工具,故这里仅做结论性的介绍,一是体会高级概率论的无穷奥妙,二是为数理统计准备必要的结论。

1.1 大数定律

  我们还是要回答最初的问题:概率究竟什么?我们建立的概率系统与直觉上的概率是否兼容?起初我们就把事件和固定的数值挂钩,就假定了随机事件有一个不变的属性和值。这个值原本就是用来描述随机现象的发生频率,现在可以来验证概率能否描述频率,这对概率论的自洽性非常重要。

1.1.1 弱大数定律

  概率就是事件到实数的映射,一个事件的概率\(p\)应当与大量重复试验中事件出现频率\(\dfrac{\mu_n}{n}\)接近。那什么是接近?怎么度量这个接近?频率序列是一个无限的随机变量序列,说它接近\(p\),比较直观的定义当然是类似极限的定义,即对任意\(\varepsilon>0\),都要有式(1)成立。这个现象被称为伯努利大数定律,它标志着大数定律研究的开始,后续的研究都始于这里。

\[\lim\limits_{n\to\infty}P\left\{\left|\dfrac{\mu_n}{n}-p\right|<\varepsilon\right\}=1\tag{1}\]

  从随机变量的角度看,频率其实是\(n\)个独立伯努利变量的平均值,我们自然想把大数定律推广到独立同分布随机变量的平均值,看它是不是接近分布的期望。甚至更一般地,可以讨论任意随机变量序列\(\xi_1,\xi_2,\cdots\),看它们的平均值是不是接近平均期望(式(2))。

\[\lim\limits_{n\to\infty}P\left\{\dfrac{1}{n}\sum\limits_{k=1}^n|\xi_k-E\xi_k|<\varepsilon\right\}=1\tag{2}\]

  对此,切比雪夫证明了:当\(\xi_i\)两两不相关,且方差一致有界时有式(2)成立,它被称为切比雪夫大数定律。证明中首次应用了切比雪夫不等式,从此矩不等式成为研究大数定律的重要手段。该定律有两个简单的变形,一个是独立不同伯努利分布下的泊松大数定律,另一个是只需条件\(D(\sum\xi_k)/n^2\to 0\)的马尔科夫大数定律,这些证明都很简单,请自行完成。

  在独立同分布的场合,辛钦大数定律甚至不要求方差存在,这进一步放宽了大数定律的条件,它在数理统计中非常重要。证明需要用到著名的连续性定理,大概是说如果分布函数收敛于另一个分布函数,则它们的特征函数也收敛于特征函数。论证中还要用到特征函数与分布函数的唯一确定性,特征函数的威力由此可见一斑。

1.1.2 强大数定律

  对于式(1)的定义,应该没有太多的异议和怀疑,但仔细看式(2),有个地方值得我们商讨。式中对某个表达式取了概率,一向严格的你不禁要问:这个概率对应的事件是什么?它的样本空间是什么?两个随机变量能随意地加减吗?运算的意义是什么?这个思考是非常必要的,而且也是对概率论的认识的一次提升,由直观数学向严格的分析数学进行转变。更具体地,我们是要严格定义随机变量序列\(\{\xi_n\}\)收敛于另一个随机变量\(\xi\)。

  判断收敛离不开运算和度量,但要使得运算\(\xi_n-\xi\)有意义,必须是\(\xi_n,\xi\)来自同一个概率空间。这样来看,不等式\(|\xi_n(\omega)-\xi(\omega)|<\varepsilon\)就有了确定的意义,它表示满足条件的样本点,且所有这样的样本点可以组成事件(考虑联合分布)。对这样的事件就可以用概率度量,因此我们就有了式(3)随机变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值