01.第一章 初等概率论

第一章 初等概率论

1.概率空间、随机变量与数字特征

概率空间通常记作 ( Ω , F , P ) (\Omega, \mathcal F, P) (Ω,F,P),其中 Ω \Omega Ω是样本空间表示随机试验的所有可能基本结果, F \mathcal F F表示事件域, P P P代表概率。

  • Ω \Omega Ω由一系列样本点 ω \omega ω组成(有限或无限),且 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
  • F \mathcal F F是事件域,是所有事件 A A A的集合;每一个事件 A A A包含一系列样本点 ω \omega ω
  • P P P是作用于事件域 F \mathcal F F上的函数。

在给定事件 B B B已经发生的情况下 A A A发生的概率称为条件概率,定义为
P ( A ∣ B ) = P ( A B ) P ( B ) , A , B ∈ F P(A|B)=\frac{P(AB)}{P(B)},\quad A,B\in \mathcal F P(AB)=P(B)P(AB),A,BF
由概率空间的定义, ( Ω , F , P ( ⋅ ∣ B ) ) (\Omega, \mathcal F, P(\cdot|B)) (Ω,F,P(B))也是一个概率空间。有一些与条件概率相关的公式:

  1. 全概率公式:对于一个完备事件组 B 1 , ⋯   , B N ( N ≤ ∞ ) B_1,\cdots,B_N(N\le \infty) B1,,BN(N),即两两不相容且 Ω = ∑ i = 1 N B i \Omega=\sum_{i=1}^N B_i Ω=i=1NBi,则对任意事件 A A A
    P ( A ) = ∑ i = 1 N P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^N P(A|B_i)P(B_i) P(A)=i=1NP(ABi)P(Bi)
    由此推论,对于事件 B B B,若 B ˉ \bar B Bˉ为其反,则
    P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ˉ ) P ( B ˉ ) P(A)=P(A|B)P(B)+P(A|\bar B)P(\bar B) P(A)=P(AB)P(B)+P(ABˉ)P(Bˉ)

  2. 链式法则:由于 P ( A B ) = P ( B ) P ( A ∣ B ) P(AB)=P(B)P(A|B) P(AB)=P(B)P(AB),故进行推广,有
    P ( A 1 ⋯ A m ) = P ( A 1 ) P ( A 2 ∣ A 1 ) ⋯ P ( A m ∣ A m − 1 ⋯ A 1 ) P(A_1\cdots A_m)=P(A_1)P(A_2|A_1)\cdots P(A_m|A_{m-1}\cdots A_1) P(A1Am)=P(A1)P(A2A1)P(AmAm1A1)

两个事件独立,指的是事件 B B B发生对事件 A A A的概率没有影响。也就是说 A , B A,B A,B独立等价于
P ( A ∣ B ) = P ( A ) ⇔ P ( A B ) = P ( A ) P ( B ) P(A|B)=P(A)\Leftrightarrow P(AB)=P(A)P(B) P(AB)=P(A)P(AB)=P(A)P(B)
如果推广到多个事件,则 A 1 , ⋯   , A m A_1,\cdots,A_m A1,,Am相互独立需要同时满足以下方程:
{ P ( A i A j ) = P ( A i ) P ( A j ) , i < j , P ( A i A j A k ) = P ( A i ) P ( A j ) P ( A k ) , i < j < k , ⋯ ⋯ P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ) ⋯ P ( A n ) . \left\{ \begin{array}{l} P(A_iA_j)=P(A_i)P(A_j), &i<j,\\ P(A_iA_jA_k)=P(A_i)P(A_j)P(A_k),&i<j<k,\\ \cdots&\cdots\\ P(A_1A_2\cdots A_n)=P(A_1)P(A_2)\cdots P(A_n). \end{array} \right. P(AiAj)=P(Ai)P(Aj),P(AiAjAk)=P(Ai)P(Aj)P(Ak),P(A1A2An)=P(A1)P(A2)P(An).i<j,i<j<k,
即同时满足事件组中任意两个、三个直至 n n n个事件都是互相独立的。再推广到两个事件域 A 1 , A 2 \mathcal A_1,\mathcal A_2 A1,A2,如果 ∀ A 1 ∈ A 1 , A 2 ∈ A 2 \forall A_1\in\mathcal A_1,A_2\in\mathcal A_2 A1A1,A2A2都有 A 1 , A 2 A_1,A_2 A1,A2独立,则称事件域 A 1 , A 2 \mathcal A_1,\mathcal A_2 A1,A2独立。


随机变量 X X X Ω ↦ R \Omega \mapsto \R ΩR的一个映射,给定事件 B ∈ B B\in\mathcal B BB,这里 B \mathcal B B R \R R上所有左开右闭有限区间构成的集合,满足可测性条件
X − 1 ( B ) = { ω ∈ Ω : X ∈ B } ∈ A X^{-1}(B)=\{\omega\in\Omega:X\in B\}\in\mathcal A X1(B)={ωΩ:XB}A
随机变量 X X X在概率 P P P下的分布函数 F X ( x ) F_X(x) FX(x)定义为
F X ( x ) = P ( ω : X ≤ x ) , x ∈ R F_X(x)=P(\omega:X\le x),\quad x\in \R FX(x)=P(ω:Xx),xR
最常见的随机变量是离散随机变量与连续随机变量。离散随机变量可以用一个概率分布列表示,
X ∼ ( x 1 x 2 ⋯ x N p 1 p 2 ⋯ p N ) , ∑ i = 1 N p i = 1 , N ≤ ∞ X\sim \left( \begin{array}{c} x_1&x_2&\cdots&x_N\\ p_1&p_2&\cdots&p_N \end{array} \right),\quad \sum_{i=1}^Np_i=1,N\le\infty X(x1p1x2p2xNpN),i=1Npi=1,N
连续随机变量可以用概率密度表示,记作 X ∼ p ( x ) X\sim p(x) Xp(x),概率密度 p ( x ) p(x) p(x)满足
F ( x ) = ∫ − ∞ x p ( u ) d u , x ∈ R F(x)=\int_{-\infty}^x p(u) du,\quad x\in \R F(x)=xp(u)du,xR
将随机变量整合就得到随机向量 ( X , Y ) (X,Y) (X,Y),其分布函数定义为
F X , Y ( x , y ) = P ( ω : X ≤ x , Y ≤ y ) F_{X,Y}(x,y)=P(\omega:X\le x,Y\le y) FX,Y(x,y)=P(ω:Xx,Yy)
记边际分布函数为
F X ( x ) = F X , Y ( x , ∞ ) , F Y ( y ) = F X , Y ( ∞ , y ) F_X(x)=F_{X,Y}(x,\infty),\quad F_Y(y)=F_{X,Y}(\infty,y) FX(x)=FX,Y(x,),FY(y)=FX,Y(,y)
联合分布可以唯一确定边际分布,但两个边际分布不能确定联合分布。

  1. 如果随机向量 ( X , Y ) (X,Y) (X,Y)是离散型的,则条件分布列为

    P Y ∣ X ( y j ∣ x i ) = p i j p i ⋅ , P X ∣ Y ( x i ∣ y j ) = p i j p ⋅ j P_{Y|X}(y_j|x_i)=\frac{p_{ij}}{p_{i\cdot}},\quad P_{X|Y} (x_i|y_j)=\frac{p_{ij}}{p_{\cdot j}} PYX(yjxi)=pipij,PXY(xiyj)=pjpij

    相互独立等价于 p i j = p i ⋅ p ⋅ j p_{ij}=p_{i\cdot}p_{\cdot j} pij=pipj

  2. 如果随机向量 ( X , Y ) (X,Y) (X,Y)是连续型的,则条件密度为
    p Y ∣ X ( y ∣ x ) = p ( x , y ) p X ( x ) , p X ∣ Y = p ( x , y ) p Y ( y ) p_{Y|X}(y|x)=\frac{p(x,y)}{p_X(x)},\quad p_{X|Y}=\frac{p(x,y)}{p_Y(y)} pYX(yx)=pX(x)p(x,y),pXY=pY(y)p(x,y)
    其中
    F X , Y ( x , y ) = ∫ − ∞ x ∫ − ∞ y p ( u , v ) d u d v , x , y ∈ R p X ( x ) = ∫ − ∞ ∞ p ( x , y ) d y , p Y ( y ) = ∫ − ∞ ∞ p ( x , y ) d x F_{X,Y}(x,y)=\int_{-\infty}^x\int_{-\infty}^y p(u,v)dudv,\quad x,y\in\R\\ p_X(x)=\int_{-\infty}^{\infty}p(x,y)dy,\quad p_Y(y)=\int_{-\infty}^\infty p(x,y)dx FX,Y(x,y)=xyp(u,v)dudv,x,yRpX(x)=p(x,y)dy,pY(y)=p(x,y)dx
    相互独立等价于
    p ( x , y ) = p X ( x ) p Y ( y ) p(x,y)=p_X(x)p_Y(y) p(x,y)=pX(x)pY(y)


对于随机变量 X X X,设其分布函数为 F ( x ) F(x) F(x),密度函数为 p ( x ) p(x) p(x)或概率分布列为 p i p_i pi,则有以下数字特征:

  1. 期望

    对于离散随机变量,如果 ∑ i = 1 N ∣ x i ∣ p i < ∞ \sum_{i=1}^N |x_i|p_i<\infty i=1Nxipi<,则期望为
    E X = ∑ i = 1 N x i p i EX=\sum_{i=1}^N x_ip_i EX=i=1Nxipi

    对于连续随机变量,如果 ∫ − ∞ ∞ ∣ x ∣ p ( x ) d x < ∞ \int_{-\infty}^\infty |x|p(x) dx<\infty xp(x)dx<,则期望为
    E X = ∫ − ∞ ∞ x p ( x ) d x EX=\int_{-\infty}^\infty xp(x)dx EX=xp(x)dx
    期望的表达式为
    E X = ∫ − ∞ ∞ x d F ( x ) EX=\int_{-\infty}^\infty xdF(x) EX=xdF(x)
    对于随机变量函数 f ( X ) f(X) f(X),其期望为
    E f ( X ) = ∫ − ∞ ∞ f ( x ) d F ( x ) Ef(X)=\int_{-\infty}^\infty f(x)dF(x) Ef(X)=f(x)dF(x)
    定义 E X k EX^k EXk为随机变量 X X X k k k阶矩。矩母函数 G X ( t ) G_X(t) GX(t)定义为
    G X ( t ) = E ( e t X ) = ∫ − ∞ ∞ e t x d F ( x ) G_X(t)=E(e^{tX})=\int_{-\infty}^\infty e^{tx}dF(x) GX(t)=E(etX)=etxdF(x)
    矩母函数并不总是存在,但如果两个随机变量拥有有限且相同的矩母函数,则这两个随机变量同分布。

  2. 方差

    对于随机变量 X X X,如果 E X 2 < ∞ EX^2<\infty EX2<,则定义方差为
    D X = E ( X − E X ) 2 = E X 2 − ( E X ) 2 DX=E(X-EX)^2=EX^2-(EX)^2 DX=E(XEX)2=EX2(EX)2
    关于方差有一个切比雪夫不等式,为
    P ( ∣ X − E X ∣ > ε ) ≤ D X ε 2 P(|X-EX|>\varepsilon)\le \frac{DX}{\varepsilon^2} P(XEX>ε)ε2DX
    如果令 T = ∣ X − E X ∣ T=|X-EX| T=XEX,则有
    P ( T > ε ) = P ( T 2 > ε 2 ) ≤ E T 2 ε 2 P ( X > a ) ≤ E X a , X ≥ 0 , a > 0 P(T>\varepsilon)=P(T^2>\varepsilon^2)\le \frac{ET^2}{\varepsilon^2}\\ P(X>a)\le\frac{EX}{a},\quad X\ge 0,a>0 P(T>ε)=P(T2>ε2)ε2ET2P(X>a)aEX,X0,a>0
    得到马尔科夫不等式的形式,因此马尔科夫不等式可以用来证明切比雪夫不等式。

  3. 协方差

    对于随机变量 X , Y X,Y X,Y,协方差与相关系数定义为
    C o v ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X E Y ρ X , Y = C o v ( X , Y ) D X ⋅ D Y ∈ [ − 1 , 1 ] Cov(X,Y)=E[(X-EX)(Y-EY)]=E(XY)-EXEY\\ \rho_{X,Y}=\frac{Cov(X,Y)}{\sqrt{DX\cdot DY}}\in[-1,1] Cov(X,Y)=E[(XEX)(YEY)]=E(XY)EXEYρX,Y=DXDY Cov(X,Y)[1,1]
    如果两个随机变量协方差为0,则意味着两个随机变量相互独立;如果相关系数为 ± 1 \pm1 ±1,则意味着两个随机变量之间存在线性关系。

    多维随机向量的协方差矩阵定义为
    Σ = ( c i j ) n × n , c i j = C o v ( X i , X j ) \boldsymbol \Sigma=(c_{ij})_{n\times n},\quad c_{ij}=Cov(X_i,X_j) Σ=(cij)n×n,cij=Cov(Xi,Xj)

与以上几种数字特征相关的计算公式如下:
Y = a X + b ⇒ E Y = a E X + b , D Y = a 2 D X ; E ( X + Y ) = E X + E Y ; D ( X + Y ) = D X + D Y + 2 C o v ( X , Y ) ; C o v ( a X , b Y ) = C o v ( b Y , a X ) = a b C o v ( X , Y ) ; C o v ( X + Y , Z ) = C o v ( X , Z ) + C o v ( Y , Z ) . Y=aX+b\Rightarrow EY=aEX+b,DY=a^2DX;\\ E(X+Y)=EX+EY;\\ D(X+Y)=DX+DY+2Cov(X,Y);\\ Cov(aX,bY)=Cov(bY,aX)=abCov(X,Y);\\ Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z). Y=aX+bEY=aEX+b,DY=a2DX;E(X+Y)=EX+EY;D(X+Y)=DX+DY+2Cov(X,Y);Cov(aX,bY)=Cov(bY,aX)=abCov(X,Y);Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z).
在有了条件分布后可以类似定义条件期望,在绝对值有限的情况下,条件期望是
E ( Y ∣ X = x ) = ∫ − ∞ ∞ y d F Y ∣ X ( y ∣ x ) E(Y|X=x)=\int_{-\infty}^\infty y dF_{Y|X}(y|x) E(YX=x)=ydFYX(yx)
对于连续情形,有
E ( Y ∣ X ) = ∫ − ∞ ∞ y p Y ∣ X ( y ∣ x ) d y = ∫ − ∞ ∞ y p ( x , y ) p X ( x ) d y E(Y|X)=\int_{-\infty}^\infty yp_{Y|X}(y|x)dy=\int_{-\infty}^\infty \frac{yp(x,y)}{p_X(x)}dy E(YX)=ypYX(yx)dy=pX(x)yp(x,y)dy
对于离散情形,有
E ( Y ∣ X = x i ) = ∑ j = 1 n y p i j E(Y|X=x_i)=\sum_{j=1}^n yp_{ij} E(YX=xi)=j=1nypij
如果对于每一个 x x x E ( Y ∣ X = x ) E(Y|X=x) E(YX=x)都存在且有限,则定义 g ( x ) = E ( Y ∣ X = x ) g(x)=E(Y|X=x) g(x)=E(YX=x),类似定义 g ( X ) = E ( Y ∣ X ) g(X)=E(Y|X) g(X)=E(YX),有全期望公式:
E [ E ( Y ∣ X ) ] = E ( g ( X ) ) = E Y E[E(Y|X)]=E(g(X))=EY E[E(YX)]=E(g(X))=EY


随机变量 X X X的特征函数被定义为
ϕ X ( t ) = E e i t X = ∫ − ∞ ∞ e i t x d F X ( x ) , t ∈ R \phi_X(t)=Ee^{itX}=\int_{-\infty}^\infty e^{itx}dF_X(x),\quad t\in\R ϕX(t)=EeitX=eitxdFX(x)tR
任何随机变量的特征函数都存在,且具有以下基本性质:

  1. ϕ ( 0 ) = E ( 1 ) = 1 \phi(0)=E(1)=1 ϕ(0)=E(1)=1

  2. ∀ t ∈ R , ∣ ϕ ( t ) ∣ ≤ 1 \forall t\in \R,|\phi(t)|\le1 tR,ϕ(t)1

  3. ϕ ( t ) \phi(t) ϕ(t) R \R R上一致连续,且非负定;

  4. 如果对某个 k ≥ 1 k\ge1 k1 E X k < ∞ EX^k<\infty EXk<,那么 ϕ X ( t ) \phi_X(t) ϕX(t) t = 0 t=0 t=0 k k k次连续可微,且
    ϕ X ( k ) ( 0 ) = i k E X k \phi_X^{(k)}(0)=i^k EX^k ϕX(k)(0)=ikEXk
    这可以用于求随机变量的 k k k阶矩;

  5. 如果 X , Y X,Y X,Y相互独立,则有
    ϕ X + Y ( t ) = ϕ X ( t ) ϕ Y ( t ) , t ∈ R \phi_{X+Y}(t)=\phi_X(t)\phi_Y(t),\quad t\in \R ϕX+Y(t)=ϕX(t)ϕY(t),tR

  6. 给定两个随机变量 X , Y X,Y X,Y,它们分布函数相同当且仅当特征函数相同。

2.收敛与极限定理

几乎处处收敛:如果存在一个零概率事件 Ω 0 \Omega_0 Ω0,使得对任意 ω ∈ Ω − Ω 0 \omega\in\Omega-\Omega_0 ωΩΩ0,当 n → ∞ n\to \infty n时有 X n ( ω ) → X ( ω ) X_n(\omega)\to X(\omega) Xn(ω)X(ω),则称 X n X_n Xn几乎处处收敛于 X X X,记作 X n → X  a.s. X_n\to X\text{ a.s.} XnX a.s.。这是所有收敛性中最强的一种。

依概率收敛:如果对任意 ε > 0 \varepsilon>0 ε>0,有 lim ⁡ n → ∞ P ( ω : ∣ X n ( ω ) − X ( ω ) ∣ > ε ) = 0 \lim \limits_{n\to \infty}P(\omega:|X_n(\omega)-X(\omega)|>\varepsilon)=0 nlimP(ω:Xn(ω)X(ω)>ε)=0,则称 X n X_n Xn依概率收敛于 X X X,记作 X n ⟶ P X X_n\stackrel{P}{\longrightarrow}X XnPX。依概率收敛比几乎处处收敛弱。

相关定理:

  1. 如果对某个 r > 0 r>0 r>0,有
    lim ⁡ n → ∞ E ∣ X n − X ∣ r = 0 \lim_{n\to \infty}E|X_n-X|^r=0 nlimEXnXr=0
    那么 X n ⟶ P X X_n\stackrel{P}{\longrightarrow }X XnPX

  2. 如果 X n ⟶ P X , X n ⟶ P Y X_n\stackrel{P}\longrightarrow X,X_n\stackrel P\longrightarrow Y XnPX,XnPY,则 X = Y  a.s. X=Y\text{ a.s.} X=Y a.s.

  3. a n , b n a_n,b_n an,bn是常数列,如果 a n → a , b n → b , X n ⟶ P X a_n\to a,b_n\to b,X_n\stackrel P\longrightarrow X ana,bnb,XnPX,则有
    a n X n + b n ⟶ P a X + b . a_nX_n+b_n\stackrel P\longrightarrow aX+b. anXn+bnPaX+b.

  4. 如果 X n ⟶ P X , Y n ⟶ P Y X_n\stackrel P\longrightarrow X,Y_n\stackrel P\longrightarrow Y XnPX,YnPY,那么
    X n ± Y n ⟶ P X ± Y , X n Y n ⟶ P X Y . X_n\pm Y_n\stackrel P\longrightarrow X\pm Y,\\ X_nY_n\stackrel P\longrightarrow XY. Xn±YnPX±Y,XnYnPXY.
    如果进一步地有 Y ≠ 0 Y\neq0 Y=0,还有
    X n Y n ⟶ P X Y . \frac{X_n}{Y_n}\stackrel P\longrightarrow \frac{X}{Y}. YnXnPYX.

  5. f : R → R f:\R\to\R f:RR是连续函数,如果 X n ⟶ P X X_n\stackrel P\longrightarrow X XnPX,那么
    f ( X n ) ⟶ P f ( X ) . f(X_n)\stackrel P\longrightarrow f(X). f(Xn)Pf(X).

依分布收敛:如果对于 F X ( x ) F_X(x) FX(x)的每一个连续点 x x x,都有 lim ⁡ n → ∞ F n ( x ) = F X ( x ) \lim\limits_{n\to \infty}F_n(x)=F_X(x) nlimFn(x)=FX(x),则称 X n X_n Xn依分布收敛于 X X X,记作 X n ⟶ d X X_n\stackrel d\longrightarrow X XndX

相关定理:

  1. 列维连续性定理: X n ⟶ d X X_n\stackrel d\longrightarrow X XndX当且仅当相应的特征函数收敛,即
    lim ⁡ n → ∞ ϕ n ( t ) = ϕ X ( t ) , t ∈ R . \lim_{n\to \infty}\phi_n(t)=\phi_X(t),\quad t\in\R. nlimϕn(t)=ϕX(t),tR.
    如果存在一个函数 ϕ ( t ) \phi(t) ϕ(t)使得 lim ⁡ n → ∞ ϕ n ( t ) = ϕ ( t ) \lim\limits_{n\to \infty}\phi_n(t)=\phi(t) nlimϕn(t)=ϕ(t),并且 ϕ ( t ) \phi(t) ϕ(t) t = 0 t=0 t=0处连续,那么存在一个随机变量 X X X使得 ϕ X = ϕ \phi_X=\phi ϕX=ϕ,并且 X n ⟶ d X X_n\stackrel d\longrightarrow X XndX

  2. 如果 c c c是常数,则 X n ⟶ P c ⇔ X n ⟶ d c X_n\stackrel P\longrightarrow c\Leftrightarrow X_n\stackrel d\longrightarrow c XnPcXndc

  3. 如果 X n ⟶ P X X_n\stackrel P\longrightarrow X XnPX,那么 X n ⟶ d X X_n\stackrel d\longrightarrow X XndX

  4. 如果 X n − Y n ⟶ P 0 X_n-Y_n\stackrel P\longrightarrow 0 XnYnP0 X n ⟶ d X X_n\stackrel d\longrightarrow X XndX,那么 Y n ⟶ d X Y_n\stackrel d\longrightarrow X YndX

  5. 如果 a n , b n a_n,b_n an,bn是常数列,且 a n → a , b n → b , X n ⟶ d X a_n\to a,b_n\to b,X_n\stackrel d\longrightarrow X ana,bnb,XndX,那么
    a n X n + b n ⟶ d a X + b . a_nX_n+b_n\stackrel d\longrightarrow aX+b. anXn+bndaX+b.

  6. 如果 c c c是常数, Y n ⟶ P c , X n ⟶ d X Y_n\stackrel P\longrightarrow c,X_n\stackrel d\longrightarrow X YnPc,XndX,则 X n Y n ⟶ d c X X_nY_n\stackrel d\longrightarrow cX XnYndcX

  7. f : R → R f:\R\to\R f:RR是连续函数,如果 X n ⟶ d X X_n\stackrel d\longrightarrow X XndX,那么
    f ( X n ) ⟶ d f ( X ) . f(X_n)\stackrel d\longrightarrow f(X). f(Xn)df(X).

均方收敛:如果 E X 2 < ∞ , E X n 2 < ∞ , n ≥ 1 EX^2<\infty,EX_n^2<\infty,n\ge1 EX2<,EXn2<,n1,且 lim ⁡ n → ∞ E ∣ X n − X ∣ 2 = 0 \lim\limits_{n\to \infty}E|X_n-X|^2=0 nlimEXnX2=0,则称 X n X_n Xn均方收敛于 X X X,记作 X n ⟶ L 2 X X_n \stackrel {L^2}\longrightarrow X XnL2X

相关定理:

  1. 如果 X n ⟶ L 2 X X_n\stackrel {L^2}\longrightarrow X XnL2X,那么 X n ⟶ P X X_n \stackrel P\longrightarrow X XnPX
  2. 如果 X n ⟶ L 2 X , X n ⟶ L 2 Y X_n \stackrel {L^2}\longrightarrow X,X_n\stackrel {L^2}\longrightarrow Y XnL2X,XnL2Y,则 X = Y  a.s. X=Y\text{ a.s.} X=Y a.s.
  3. 如果存在于一个常数 M M M使得 ∣ X n ∣ ≤ M  a.s. |X_n|\le M\text{ a.s.} XnM a.s.,并且 X n ⟶ P X X_n\stackrel P\longrightarrow X XnPX,那么 X n ⟶ L 2 X X_n\stackrel {L^2}\longrightarrow X XnL2X
  4. 如果 X n ⟶ L 2 X X_n\stackrel {L^2}\longrightarrow X XnL2X,那么 E X n → E X EX_n\to EX EXnEX

接下来是极限定理,假设 ξ n \xi_n ξn是一系列独立同分布的随机变量,令 S n = ∑ i = 1 n ξ i S_n=\sum_{i=1}^n \xi_i Sn=i=1nξi

柯尔莫哥洛夫极限定理表明,当 E ∣ ξ n ∣ < ∞ , E ξ n = μ E|\xi_n|<\infty,E\xi_n=\mu Eξn<,Eξn=μ时,有
S n n → μ  a.s. \frac{S_n}{n}\to \mu\text{ a.s.} nSnμ a.s.
即样本均值以概率1收敛到总体均值。

林德伯格列维极限定理表明,当 D ξ n = σ 2 , E ξ n = μ D\xi_n=\sigma^2,E\xi_n=\mu Dξn=σ2,Eξn=μ时,有
S n − n μ n σ → N ( 0 , 1 ) . \frac{S_n-n\mu}{\sqrt{n}\sigma}\to N(0,1). n σSnnμN(0,1).

3.数学期望收敛定理

单调收敛定理:令 ( X n , n ≥ 1 ) (X_n,n\ge1) (Xn,n1)是一列单调不减非负随机变量,即 0 ≤ X n ≤ X n + 1  a.s. 0\le X_n\le X_{n+1} \text{ a.s.} 0XnXn+1 a.s.,如果 X n → X  a.s. X_n\to X \text{ a.s.} XnX a.s.,那么 lim ⁡ n → ∞ E X n = E X \lim\limits_{n\to \infty}EX_n=EX nlimEXn=EX;如果 ( X n , n ≥ 1 ) (X_n,n\ge1) (Xn,n1)是一列单调不增非负随机变量,即 0 ≤ X n + 1 ≤ X n  a.s. 0\le X_{n+1}\le X_n\text{ a.s.} 0Xn+1Xn a.s.,如果 X n → X  a.s. X_n\to X\text{ a.s.} XnX a.s. E X 1 < ∞ EX_1<\infty EX1<,则也有 lim ⁡ n → ∞ E X n = E X \lim\limits_{n\to \infty}EX_n=EX nlimEXn=EX

Fatou引理:令 ( X n , n ≥ 1 ) (X_n,n\ge 1) (Xn,n1)是一列单调非负随机变量,那么
lim ⁡ n → ∞ E X n ≥ E ( lim ⁡ n → ∞ X n ) \lim_{n\to\infty }EX_n\ge E(\lim_{n\to \infty}X_n) nlimEXnE(nlimXn)
控制收敛定理:令 ( X n , n ≥ 1 ) (X_n,n\ge 1) (Xn,n1)是一列随机变量,假设存在一个随机变量 Y Y Y使得 E ∣ Y ∣ < ∞ E|Y|<\infty EY<,并且 ∣ X n ∣ ≤ Y  a.s. |X_n|\le Y\text{ a.s.} XnY a.s.,如果 X n → X  a.s. X_n\to X\text{ a.s.} XnX a.s.或者 X n → P X X_n\stackrel P\to X XnPX,那么
lim ⁡ n → ∞ E X n = E X \lim_{n\to \infty }EX_n=EX nlimEXn=EX

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值