dijkstra求的是单源最短路,朴素版的dijkstra边数较多,是稠密图,所以用邻接矩阵来存储。
具体实现过程为:
1.初始化距离数组
2.用s中来存放已经确定最短距离的点,进行迭代
用 t 储存不在 s 中的距离最短的点,将 t 放入 s 数组,用 t 更新其他点的距离,有一些细节,具体在代码中介绍
题目背景:给定n个点m条有向边,求1号点到n号点的最短距离,可能存在重边和自环。
const int N=510;
int n,m;//n个点m条有向边
int g[N][N];//邻接矩阵
int dist[N];//存储一号点到每个点的最短距离
bool st[N];//最短路是否确定
处理输入
int main()
{
scanf("%d %d",&n,&m);
memset(g,0x3f,sizeof g);//初始化邻接矩阵
while(m--)
{
int a,b,c;//两个点和权值
scanf("%d %d %d",&a,&b,&c);
g[a][b]=min(g[a][b],c);//初始化同时处理重边
}
int t=dijkstra();
printf("%d",t);
return 0;
}
关键步骤
int dijkstra()
{
memset(dist,0x3f,sizeof dist);
dist[1]=0;
for(int i=0;i<n;i++)//进行迭代
{
int t=-1;
for(int j=1;j<=n;j++)
{
if((!st[j] && t == -1) /*找到最近的没有被更新的点*/ || dist[t]>dist[j]/*不是最优*/)
t=j;
}
st[t]=true;
for(int j=1;j<=n;j++)//更新其他点
{
dist[j]=min(dist[j],dist[t]+g[t][j]);
}
}
if(dist[n]==0x3f3f3f)//没有这样一条路
return -1;
return dist[n];
}