单源最短路-朴素dijkstra

 ​​​​​dijkstra求的是单源最短路,朴素版的dijkstra边数较多,是稠密图,所以用邻接矩阵来存储。

具体实现过程为:

1.初始化距离数组

2.用s中来存放已经确定最短距离的点,进行迭代

 

用 t 储存不在 s 中的距离最短的点,将 t 放入 s 数组,用 t 更新其他点的距离,有一些细节,具体在代码中介绍

题目背景:给定n个点m条有向边,求1号点到n号点的最短距离,可能存在重边和自环。

 

​
const int N=510;
int n,m;//n个点m条有向边 
int g[N][N];//邻接矩阵
int dist[N];//存储一号点到每个点的最短距离
bool st[N];//最短路是否确定

​

处理输入

int main()
{
	scanf("%d %d",&n,&m);
    memset(g,0x3f,sizeof g);//初始化邻接矩阵 
    while(m--)
	{
	    int a,b,c;//两个点和权值 
		scanf("%d %d %d",&a,&b,&c);	
		g[a][b]=min(g[a][b],c);//初始化同时处理重边 
	} 
	int t=dijkstra();
	printf("%d",t);
	return 0; 
} 

​

关键步骤 

int dijkstra()
{
	memset(dist,0x3f,sizeof dist);
	dist[1]=0;
	for(int i=0;i<n;i++)//进行迭代 
	{
		int t=-1;
		for(int j=1;j<=n;j++)
		{
	      if((!st[j] && t == -1) /*找到最近的没有被更新的点*/ || dist[t]>dist[j]/*不是最优*/)
		  t=j;
		}
		st[t]=true;
		for(int j=1;j<=n;j++)//更新其他点
		{
			dist[j]=min(dist[j],dist[t]+g[t][j]);
		}
	}
	if(dist[n]==0x3f3f3f)//没有这样一条路
	return -1; 
	return dist[n];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值