Prim算法,Kruskal算法

本文详细介绍了Prim算法和Kruskal算法两种求解最小生成树的经典算法。Prim算法通过迭代选择最近的顶点并更新距离来构建生成树;Kruskal算法则通过排序边并使用并查集判断是否添加新边来实现。这两种算法是图论中非常重要的内容。
摘要由CSDN通过智能技术生成

Prim算法

Prim算法可以求最小生成树

1.将所有距离初始化为正无穷

2.进行迭代,找到不在集合中的距离最小的点

   集合是指当前的生成树(连通块)

3.更新其他点到集合的最小距离

4.加到集合中去

样例:求最小生成树

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,w表示点 u 和点 v 之间存在一条权值为 w 的边。

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

//g储存边的权值
//dist是生成树距离
//st判重数组 
int prim()
{
	memset(dist,0x3f,sizeof dist);
	int res=0;
	for(int i=0;i<n;i++)
	{
		int t=-1;
	    for(int j=1;j<=n;j++)
	    {
		    if(!st[j]&&(t==-1||dist[t]>dist[j]))
		    t=j;
		}
		if(i&&dist[t]==INF)
		return INF;
		if(i)
		res+=dist[t];
		st[t]=true;
		for(int j=1;j<=n;j++)
		{
			dist[j]=min(dist[j],g[t][j]);
	    }    
	}
	 return res;
} 

Kruskal算法 

1.将所有边按权值从小到大排序

2.按顺序枚举每条边,如果不连通,就加到集合中 ,用并查集来表示集合

int Kruskal()
{
    sort(edges,edges+m);//边集
	for(int i=1;i<=n;i++)
	    p[i]=i;//初始化并查集
	int res=0,cnt=0;
	for(int i=0;i<m;i++)
	{
		int a=edges[i].a;
		int b=edges[i].b;
		int w=edges[i].w;
		a=find(a);
		b=find(b);
		if(a!=b)//这个边没被加入 
		{
			//加入这条边 
			p[a]=b;
			res=res+w;
			cnt++;
		}
	 }
	 if(cnt<n-1)
         return INF;
     return res;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值