今天练习最小生成树时做到这样一个题
1150. 最小生成树计数 - AcWing题库 一个很裸的求最小生成树个数的题,搜题解发现矩阵树来求解很好,关于图论的结论一般证明都非常麻烦,而且我觉得会用就好,这里附上大佬的证明,矩阵树定理及其无向图形式证明 - - 洛谷博客 ,我们只取其中的结论部分
首先,定义一些东西
对于无向图,定义 D(G) 为图 G 的度数矩阵,其中:
(deg是度数的意思)
定义 A(G) 为图 G 的邻接矩阵,其中:
the number of the path from i to j
定义图 G 的 kirchhoff 矩阵
定义无向图 G 的生成树数量为 t(G)
那么对于一个无向图:
(det表示求一个方阵的行列式)
所以问题转化为求一个方阵的行列式
最常用的求行列式的方法应该是将原矩阵变为上三角
ACM矩阵行列式计算_zhoufenqin的博客-CSDN博客
int gauss()
{
ll ans = 1;
for(int i = 1;i <= n; i ++)//当前行
{
for(int j = i + 1; j <= n; j ++)//之后的每一行,因为每一行的当前第一个数要转化成0
{
int x = i,y = j;
while(a[y][i])//利用gcd的方法,不停地进行辗转相除
{
ll t = a[x][i] / a[y][i];
for(int k=i;k<N;k++)
a[x][k]=(a[x][k] - a[y][k] * t) % MOD;
swap(x,y);
}
if(x != i)//奇数次交换,则D=-D'整行交换
{
for(int k = 0; k <= n; k ++)
swap(a[i][k],a[x][k]);
sign ^= 1;
}
}
if(a[i][i] == 0)//斜对角中有一个0,则结果为0
{
return 0;
}
else
ans=ans*a[i][i]%MOD;
}
return ans;
}
我对例题求了一上午一直算不出答案,才发现这个定理求的是生成树的数量,不是最小生成树的数量,要求最小生成树,还是移步最小生成树计数-Kruskal+Matrix_Tree定理_Jarily的博客-CSDN博客