目录
1.内容介绍
2.部分代码
3.实验结果
4.内容获取
1.内容介绍
野马优化算法 (Wild Horse Optimizer, WHO) 是一种基于群体智能的元启发式优化算法,它模拟了野马群的行为特征,如迁徙、探索、领地维护和社会互动等,来解决复杂的优化问题。
WHO的工作机制主要包括:
- 迁徙行为:野马群在搜索空间中迁徙,探索新的解空间。
- 领地行为:通过模拟野马群保卫领地的行为,促进算法的局部搜索能力。
- 社会互动:野马间的互动有助于增强种群多样性,避免过早收敛。
优点包括:
- 强大的探索能力:WHO能够有效地探索解空间的不同区域。
- 灵活性:适用于多种优化问题,包括连续和离散优化。
- 快速收敛:通常能够在较少迭代次数内找到较好的解。
- 易于实现:算法设计直观,易于编程实现。
不足之处:
- 可能的早熟收敛:在某些情况下,WHO可能会过早收敛到局部最优解。
- 参数敏感性:算法性能可能会受到某些关键参数的影响,需要适当的参数调优。
- 计算成本:对于非常复杂的问题,WHO可能需要较高的计算资源。
总之,WHO作为一种新颖的优化算法,在处理复杂优化问题方面展现出了潜力。随着进一步的研究和应用,WHO有望成为解决实际问题的有效工具。
2.部分代码
clear
close all
clc
N=30; % Number of search agents
Function_name='F2'; % % Name of the test function that can be from F1 to F13 and cec01 to cec10
Max_iter=500; % Maximum number of iterations
% Load details of the selected benchmark function
[dim,fobj,ub, lb] = Select_Functions(Function_name);
[Convergence_curve,gBest,gBestScore]=WHO(N,Max_iter,lb,ub,dim,fobj);
figure('Position',[500 500 660 290])
subplot(1,2,1);
func_plot(Function_name);
title('Objective space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
subplot(1,2,2);
plots=semilogx(Convergence_curve,'Color','r');
set(plots,'linewidth',2)
hold on
title('Objective space')
xlabel('Iterations');
ylabel('Best score');
axis tight
grid on
box on
legend('WHO')
display(['The best location of WHO is: ', num2str(gBest)]);
display(['The best fitness of WHO is: ', num2str(gBestScore)]);
3.实验结果
4.内容获取
野马优化算法(WHO)matalb源代码:主页欢迎自取,点点关注,非常感谢!