洛谷P1149 火柴棒等式
题目描述
给你n根火柴棍,你可以拼出多少个形如“A+B=C”的等式?等式中的A、B、C是用火柴棍拼出的整数(若该数非零,则最高位不能是0)。用火柴棍拼数字0−9的拼法如图所示:
注意:
-
加号与等号各自需要两根火柴棍
-
如果A≠B,则A+B=C与B+A=C视为不同的等式(A,B,C>=0)
-
n根火柴棍必须全部用上
输入输出格式
输入格式:
一个整数n(n<=24)。
输出格式:
一个整数,能拼成的不同等式的数目。
输入输出样例
输入样例#1:
14
输出样例#1:
2
输入样例#2:
18
输出样例#2:
9
说明
【输入输出样例1解释】
2个等式为0+1=1和1+0=1。
【输入输出样例2解释】
9个等式为:
0+4=4
0+11=11
1+10=11
2+2=4
2+7=9
4+0=4
7+2=9
10+1=11
11+0=11
对于判断火柴棒的个数问题,我们可以使用数组下标代表这个数,赋值代表所需
的火柴棒个数,那么此时我们可以发现相加最大的数一定会小于2000,(我们可以
发现,其实所需最小火柴根数的最大值其实是1111+0=1111这个式子,那么为了保险
最大值设一个2000的数组其实很充分),我们就模拟将每一个位置的数所需火柴棒相加
只要能保证相加的火柴棒个数为24且等于所得结果就行(不要忘记加号和等号要用掉
四根火柴棒)
#include<stdio.h>
int main()
{
int a[2001] = {6}, b, c[10] = {6, 2, 5, 5, 4, 5, 6, 3, 7, 6}; //a数组是结果值,c数组为0-9没个数所需火柴棒根叔
int s=0, i, j;
scanf("%d", &b);
for(i = 1; i <= 2000; i++)
{
j = i;
while(j >= 1)
{
a[i] = a[i] + c[j % 10];
j = j / 10;
}
}
for(i = 0;i <= 1000; i++)
{
for(j = 0; j <= 1000; j++)
if(a[i] + a[j] + a[i + j] + 4 == b)
s++;
}
printf("%d", s);
return 0;
}