BERT模型介绍

BERT模型基于Transformer编码器,通过输入表示、遮蔽语言模型和下一句预测进行预训练,再通过微调适应下游任务。其创新在于使用双向Transformer捕捉上下文信息,对无标注语料进行自监督学习。
摘要由CSDN通过智能技术生成

BERT 模型

        BERT的网络架构是基于Vaswani et al. (2017) 中描述的原始实现的multi-layer bidirectional Transformer编码器。BERT使用双向的Transformer,在所有层中同时学习上下文语境特征信息。

1、输入表示

        BERT模型的输入表示能够在一个token序列中明确地表示单个文本句子或一对文本句子。对于给定的token,通过对相应的token embeddings、segment embeddings和position embeddings进行融合作为模型的输入。具体如下:

(1)对于token embeddings使用WordPiece嵌入和30,000个token的词汇表。

(2)使用学习的positional embeddings,将词语的位置信息编码成特征向量,表示句子中词语的位置信息,支持的序列长度最多为512个token。每个序列的第一个token始终是特殊分类嵌入([CLS])。对应于该token的最终隐藏状态(即,Transformer的输出)被用作分类任务的聚合序列表示。

(3)句子对被打包成一个序

BERT全称为Bidirectional Encoder Representations from Transformers,是谷歌公司在2018年10月份发布的一种自然语言处理(NLP)模型BERT是一种预训练模型,可以用来生成高质量的文本表示,可以用于各种自然语言处理任务,例如问答系统、文本分类、命名实体识别、情感分析等。BERT模型自然语言处理领域的一种重要进展,因为它在多项基准测试中取得了最先进的成果。 BERT模型的基本结构是Transformer,是一种基于自注意力机制的序列到序列模型,它消除了传统的递归和卷积操作,能够更好地处理长文本序列。BERT模型使用了两个Transformer编码器,一个用于从左到右的语言建模(LM),一个用于从右到左的LM,这使得BERT模型可以在预训练阶段双向地学习语言的上下文信息。 BERT模型的训练有两个阶段:预训练和微调。预训练阶段使用大量无标注的文本数据,例如维基百科、书籍、新闻文章等,通过对这些文本数据进行掩码语言建模(Masked Language Model,MLM)和下一句预测(Next Sentence Prediction,NSP)任务进行预训练。在MLM任务中,BERT模型随机屏蔽输入文本中的一些单词或片段,然后预测这些屏蔽单词或片段的原始文本;在NSP任务中,BERT模型输入两个句子,然后预测这两个句子是否是连续的。 预训练完成后,BERT模型可以应用于各种自然语言处理任务。在微调阶段,BERT模型的参数会根据具体任务进行微调,例如文本分类、情感分析、问答系统等。微调阶段的训练数据通常是有标注的文本数据,例如IMDB电影评论数据集、SQuAD问答数据集等。 BERT模型的主要优点包括: 1. 双向建模:BERT模型可以从左到右和从右到左同时建模,这使得它可以更好地理解语言的上下文信息。 2. 预训练:BERT模型采用预训练的方式进行训练,可以使用大量的无标注数据来学习语言的规律,从而提高模型的泛化性能。 3. 多任务学习:BERT模型可以应用于各种自然语言处理任务,因为它可以通过微调的方式适应不同的任务。 4. 最先进的性能:BERT模型在多项基准测试中取得了最先进的成果,在许多自然语言处理任务中都取得了最好的性能。 总之,BERT模型自然语言处理领域的一种重要进展,它采用预训练的方式进行训练,可以生成高质量的文本表示,可以用于各种自然语言处理任务。BERT模型的成功证明了预训练模型自然语言处理中的有效性,也为自然语言处理领域的未来发展指明了方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值