KGEval: Accuracy Estimation of Automatically Constructed Knowledge Graphs

在这里插入图片描述

题目: KGEval: Accuracy Estimation of Automatically Constructed Knowledge Graphs
作者: Prakhar Ojha,Partha Talukdar(Indian Institute of Science)
年份: 2017
期刊/会议: EMNLP 2017

1. 简介

由于在自动构建KG过程中的不完善,KG中会出现许多错误的信念(beliefs)或三元组。知道KG中每一个谓词(predicate)的准确性能够对进一步的改进提供针对性的反馈,并做到扬长避短。KG整体的准确性能够量化其构建过程的有效性。了解谓词级粒度(predicate-level granularity)的准确性对于集成来自多个KG的意见的问答(QA)系统非常有帮助。

尽管众包市场,如AMT(Amazon Mechanical Turk),提供了一个方便的途径来收集人工评判,但是在大尺度KG上成本巨大,因此我们考虑一个信念评估任务(Belief Evaluation Task, BET),手动地对单个信念进行正误分类,这时,关键的问题转换为:如何挑选一个信念子集来最好地估计KG与其谓词的准确性。

一个原始和流行的方法就是随机地从KG中抽取信念样本子集,但随机抽样忽略了信念之间的共轭关系,通常会导致过度抽样和较差的准确度估计。

本文的主要贡献:

  1. 系统性地研究了自动构建的KG的质量评估这一重要问题;
  2. 提出了新的基于众包的系统KGEval来估计大尺度KG的准确度,通过探索信念之间的依赖性来获取更精确、更快的准确度估计;
  3. 在真实世界KG中做实验,验证KGEval的有效性、鲁棒性和可扩展性。

2. 符号说明

在这里插入图片描述

3. KGEval系统

3.1 组合限制(Coupling Constraints)

由于KG富有关系的结构,信念的评价标签经常彼此依赖。在本文中,我们从KG本体和链接预测算法中获取组合限制集合 C \mathcal{C} C

3.2 评估耦合图(Evaluation Coupling Graph, ECG)

为了将所有的信念和约束放置到同一个地方,我们构建一个包含两种类型节点的图:一类节点是BET中的节点 h ∈ H h\in\mathcal{H} hH;另一类节点是约束集合中的约束 C i ∈ C \mathcal{C}_i\in\mathcal{C} CiC,我们称之为ECG,其中节点集 G = ( H ∩ C , E ) G=(\mathcal{H}\cap\mathcal{C},\mathcal{E}) G=(HC,E),边集 E = { ( C i , h ) ∣ h ∈ Dom ( C i ) , ∀ C i ∈ C } \mathcal{E}=\{(\mathcal{C}_i, h)|h\in\text{Dom}(\mathcal{C}_i),\forall\mathcal{C}_i\in\mathcal{C}\} E={(Ci,h)hDom(Ci),CiC},ECG是一种二部因子图。如图所示

在这里插入图片描述
ECG

3.3 推断机制(Inference Mechanism)

推断机制能够利用可获得的耦合约束,将已评价的信念正误标签传递到还未评价的信念上,我们使用概率软逻辑(Probabilistic Soft Logic, PSL)来作为推断引擎。

BET中任何信念的标签 Ω ( H ) ∈ { 0 , 1 } ∣ H ∣ \Omega(\mathcal{H})\in\{0,1\}^{|\mathcal{H}|} Ω(H){0,1}H 的概率可以表示为
P ( Ω ( H ) ) = 1 Z exp ⁡ [ − ∑ j = 1 ∣ C ∣ θ j ψ j ( C j ) ] \mathbb{P}(\Omega(\mathcal{H}))=\frac{1}{Z}\exp\left[-\sum_{j=1}^{|\mathcal{C}|}\theta_j\psi_j(\mathcal{C}_j)\right] P(Ω(H))=Z1exp j=1Cθjψj(Cj)
其中 Z Z Z表示正则化系数,势函数 ψ j ( C i ) \psi_j(\mathcal{C}_i) ψj(Ci)表示约束 C i \mathcal{C}_i Ci满足的满意程度,例如 C 5 = h x ∧ h y → h w \mathcal{C}_5=h_x\land h_y\rightarrow h_w C5=hxhyhw,则 ψ j ( C 5 ) = ( max ⁡ { 0 , h x + h y − 1 − h w } ) 2 \psi_j(\mathcal{C}_5)=(\max\{0,h_x+h_y-1-h_w\})^2 ψj(C5)=(max{0,hx+hy1hw})2。这样我们将问题转化为最大后验(maximum a-posteriori, MAP)的优化问题,如下
Ω ( H ) P S L = arg max ⁡ Ω ( H ) P ( Ω ( H ) ) \Omega(\mathcal{H})_{PSL}=\argmax_{\Omega(\mathcal{H})}\mathbb{P}(\Omega(\mathcal{H})) Ω(H)PSL=Ω(H)argmaxP(Ω(H))
我们将标注为 γ ∈ { 0 , 1 } \gamma\in\{0,1\} γ{0,1}的BET h h h估计得分表示为 M P S L ( h , γ ) ∈ [ 0 , 1 ] M_{PSL}(h,\gamma)\in[0,1] MPSL(h,γ)[0,1],我们取
l ( h ) = { 1 if  M P S L ( h , 1 ) ≥ τ 0 if  M P S L ( h , 0 ) ≥ τ ∅ otherwise l(h)=\begin{cases} 1 &\text{if } M_{PSL}(h,1) \ge\tau\\ 0 &\text{if } M_{PSL}(h,0) \ge\tau\\ \empty &\text{otherwise} \end{cases} l(h)= 10if MPSL(h,1)τif MPSL(h,0)τotherwise
其中阈值 τ \tau τ为超参数。得到推断集合(Inferable Set) I ( G , Q ) = { h ∈ H ∣ l ( h ) ≠ ∅ } \mathcal{I}(G,\mathcal{Q})=\{h\in\mathcal{H}|l(h)\neq\empty\} I(G,Q)={hHl(h)=}

注意到ECG中的两个BET节点可以通过不同的约束节点进行不同强度的相互作用,这种多关系结构需要软概率进行传播。

3.4 控制机制(Control Mechanism)

在每一轮迭代过程中,控制机制选择一个BET进行众包评估,我们最终要解决的优化问题是找到一个合适的已评价的BET使得推断集合最大,可表示为下面的优化问题:
arg max ⁡ Q ⊆ H ∣ I ( G , Q ) ∣ \argmax_{\mathcal{Q}\subseteq\mathcal{H}}|\mathcal{I}(G,\mathcal{Q})| QHargmaxI(G,Q)
可以证明该问题是SubmodularityNP-Hard的,利用贪婪爬坡算法,我们能够保证 ( 1 − 1 / e ) ≈ 63 % (1-1/e)\approx63\% (11/e)63%的近似求解。

3.5 KGEval算法

在这里插入图片描述

在这里插入图片描述
算法中的收敛意为得到的估计精确度 [ Acc t − k , … , Acc t − 1 , Acc t ] [\text{Acc}_{t-k}, \ldots,\text{Acc}_{t-1},\text{Acc}_t] [Acctk,,Acct1,Acct]的方差小于 α \alpha α

4. 实验结果

4.1 实验准备

数据集
在这里插入图片描述
评估表现的计量方式

  • 谓词层面,估计的准确度和标准的准确度的平均差值:
    Δ p r e d i c a t e = 1 ∣ R ∣ ( ∑ ∀ r ∈ R ∣ Φ ( H r ) − 1 ∣ H r ∣ ∑ ∀ h ∈ H r l ( h ) ∣ ) \Delta_{predicate}=\frac{1}{|R|}\left(\sum_{\forall r\in R}\left|\Phi(\mathcal{H}_r)-\frac{1}{|\mathcal{H}_r|}\sum_{\forall h\in \mathcal{H}_r}l(h)\right|\right) Δpredicate=R1(rR Φ(Hr)Hr1hHrl(h) )
  • 整体层面,估计的准确度和标准的准确度的平均差值:
    Δ o v e r a l l = ∣ Φ ( H ) − 1 ∣ H ∣ ∑ ∀ h ∈ H l ( h ) ∣ \Delta_{overall}=\left|\Phi(\mathcal{H})-\frac{1}{|\mathcal{H}|}\sum_{\forall h\in\mathcal{H}}l(h)\right| Δoverall= Φ(H)H1hHl(h)

4.2 KGEval估计KG准确度的效果

在这里插入图片描述
在这里插入图片描述
这里我们比较KGEval和随机方法整体层面计算的误差落到每个谓词上的误差,由于KGEval考虑了信念之间的耦合关联,所以对一个信念的评估能够对其他信念的评估起到帮助。

4.3 模型中组合限制的重要性

在这里插入图片描述

4.4 信念评估覆盖率

在这里插长度
X轴为参与众包评估的信念数目。

4.5 鲁棒性

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值