数据结构入门5-2(树和二叉树)

目录

注:

树的存储结构

1. 双亲表示法

2. 孩子表示法

3. 重要:孩子兄弟法(二叉树表示法)

森林与二叉树的转换

树和森林的遍历

1. 树的遍历

2. 森林的遍历

哈夫曼树及其应用

基本概念

哈夫曼树的构造算法

 1. 构造过程

2. 算法实现

哈夫曼编码

算法实现

文件的编码和译码

二叉树的运用 - 利用二叉树求解表达式

中缀表达式树的创建

中缀表达式树的求值


注:

        本笔记参考:《数据结构(C语言版)》


        接下来是树的表示、遍历操作及树林与二叉树之间的对应关系。

树的存储结构

1. 双亲表示法

        用一组连续的存储单元存储树的结点,每个结点包括两个域:

例如:

  • 优点:求结点的双亲树的根会十分方便;
  • 缺点:求结点的孩子时需要遍历整个结构。

------

2. 孩子表示法

        由于每个结点可以有多棵子树,所以每个结点可以有多个指针域,每个指针域分别指向其中一棵子树的根结点:

    除此之外,还有一种存储结构:在这种存储结构中,由孩子结点组成了一个个线性表,并且把这些链表的头结点再组成一个线性表。

【例如】

        而如果把双亲表示法和孩子表示法结合起来,就会得到又一种存储结构:

------

3. 重要:孩子兄弟法(二叉树表示法)

        即将二叉链表作为树的存储结构,这种链表有两个链域:

typedef struct CSNode {
	ElemType data;
	CSNode* firstchild, * nextsibling;
}CSNode, *CSTree;

        这种存储结构便于各种关于树的操作,譬如访问孩子节点:只需交替寻找 firstchild域nextsibling域 即可。

     而如果要方便寻找双亲结点,仅需在结构上多设置一个 parent域 即可。

        如上图所示,这种存储结构与二叉链表完全一致,可以通过这种结构,将一般的树转换成二叉树进行处理。因此,孩子兄弟表示法的运用较为普遍

森林与二叉树的转换

        由上述的孩子兄弟表示法可知,任何一棵和树对应的二叉树,其根结点的右子树必空。例如:

        通过上述的例子,就可以揭示森林与二叉树之间的转换规律。

        现在假设:

    因为空树就是空二叉树,所以这种情况不做说明。

1. 森林转换为二叉树

2. 二叉树转换为森林

    上述所描述的转换方式都可以通过递归实现。

树和森林的遍历

1. 树的遍历

        与二叉树不同,树的遍历只有两种方式:

  1. 先根(次序)遍历:优先访问树的根结点,然后依此访问子树;
  2. 后根(次序)遍历:先后根遍历子树,再访问对应根结点。

【例如】


2. 森林的遍历

||| 森林和树之间是可以进行相互递归的。

    遍历的一个前提:森林非空。

(1)先序遍历规则:

  1. 访问森林中第一棵树的根结点;
  2. 先序访问第一棵树的根结点的子树森林;
  3. 先序遍历由剩余的树构成的森林。

(2)中序遍历规则:

  1. 中序遍历森林中第一棵树的根结点的子树森林;
  2. 访问第一棵树的根结点;
  3. 中序遍历由剩余的树构成的森林。

【例如】

    注:此处森林的先序和中序遍历,分别与对应二叉树的先序和中序遍历相对。

哈夫曼树及其应用

基本概念

||| 哈夫曼树(即最优二叉树):是一类带权路径长度最短的二叉树。

        以下是一些会用到的概念:

概念定义
路径从树中的一个结点到另一个结点之间的 分支 构成两结点之间的路径
路径长度即路径上的分支数目
树的路径长度从树根到每一结点的路径长度之和

赋予某个实体的一个量

(是对实体的某个或某些属性的数值化描述)

结点的带权路径长度= 该结点到树根之间的路径长度 × 结点上的权

树的带权路径长度(WSL)

WSL=\sum_{k=1}^{n}w_{k}l_{k}

= 树中 所有叶子结点 的带权路径长度之和

【例如】

        有4个叶子结点a、b、c、d,分别带权7、5、2、4,这4个叶子结点存在于不同的二叉树上:

        可以验证,下面的这棵树的带权路径长度恰好是最小的(或者说,在所有带权为7、5、2、4的4个叶子结点的二叉树中其值最小),它就是哈夫曼树。

    由上述例子可以看出:哈夫曼树权值越大的结点离根结点越近

哈夫曼树的构造算法

 1. 构造过程


2. 算法实现

    由上述构造可知,哈夫曼树中不存在度为1的结点。故若哈夫曼树存在n个叶子结点,则其总结点数一定是2n - 1。

        哈夫曼树的结点存储结构:

        若将上述的存储结构转换为代码,就是:

typedef struct
{
	int weight;					//结点的权值
	int parent, lchild, rchild;	//结点的双亲、左孩子和右孩子的下标
}HTNode, *HuffmanTree;

        注意:和以往的链式存储不同,此次是通过动态分配的方式对哈夫曼树进行存储。

        在具体的实现中,为了方便,往往会将下标为0的单元置空,所以开辟的数组大小将会是2n。对存储内容进行分类:

  • 前1~n个单元:存储叶子结点;
  • 后n - 1个单元:存储非叶子结点。

【参考代码:构造哈夫曼树】

void CreateHuffmanTree(HuffmanTree& HT, int n)
{
	//---初始化开始---
	if (n <= 1)
		return;

	int m = 2 * n - 1;
	HT = new HTNode[m + 1];				//规定:HT[m]表示根结点
	for (int i = 1; i <= m; i++)
	{									//处理 1 至 m 个单元(初始化)
		HT[i].parent = 0;
		HT[i].lchild = 0;
		HT[i].rchild = 0;
	}
	for (int i = 1; i <= n; i++)
	{									//输入叶子结点的权值(即前n个结点)
		cin >> HT[i].weight;
	}

	//---初始化完毕,开始创建哈夫曼树---
	for (int i = n + 1; i <= m; i++)
	{									//进行n-1次的构造操作
		int s1 = 0;
		int s2 = 0;
		SelectLeaves(HT, i - 1, s1, s2);//挑选目标结点
		HT[s1].parent = i;				//更改双亲域(相当于删除s1和s2,得到了新结点i)
		HT[s2].parent = i;

		HT[i].lchild = s1;				//将s1和s2作为i的孩子
		HT[i].rchild = s2;

		HT[i].weight = HT[s1].weight + HT[s2].weight;
	}
}

其中,函数SelectLeaves的参考如下(仅供参考):

//挑选要求:
//1. 双亲域为0;
//2. 权值最小。
void SelectLeaves(HuffmanTree HT, int i, int& s1, int& s2)
{
	int left = 1;
	int right = i;
	while (left < right)
	{
		if (HT[left].parent == 0 && HT[right].parent == 0)
		{
			if (HT[left].weight <= HT[right].weight)
				right--;
			else
				left++;
		}
		else if (HT[left].parent != 0)
			left++;
		else
			right--;
	}
	s1 = left;
	HT[s1].parent = 1;

	left = 1;
	right = i;
	while (left < right)
	{
		if (HT[left].parent == 0 && HT[right].parent == 0)
		{
			if (HT[left].weight <= HT[right].weight)
				right--;
			else
				left++;
		}
		else if (HT[left].parent != 0)
			left++;
		else
			right--;
	}
	s2 = left;
}

哈夫曼编码

        为了对数据文件进行尽可能的压缩,有人提出了不定长编码的概念:为出现次数较多的字符编以较短的代码。而通过哈夫曼树设计的二进制编码,就可以满足这一需求。

在上图中,约定:

  • 左分支标记为0;
  • 右分支标记为1。

        由此,根结点到每个叶子结点的路径上的0、1序列就构成了相应字符的编码。这种由各分支的赋值构成的二进制串,就是哈夫曼编码

    前缀编码的概念(提及):若在一个编码方案中,任一编码都不是其他任何编码的前缀(最左子串),则称该编码为前缀编码。譬如:

前缀编码: 0, 10, 110, 111

非前缀编码:0, 01, 010, 111

哈夫曼编码的两个性质

  1. 哈夫曼编码是前缀编码(因为路径的不同)
  2. 哈夫曼编码是最优前缀编码:对于包含n个字符的数据文件,分别以字符的出现次数为权值构造哈夫曼树,再用该树对应的哈夫曼编码压缩文件,可使文件压缩后对应的二进制文件长度最短

算法实现

主要思想:

  • 从叶子出发,向上回溯至根结点。
  • 回溯时,走左分支则生成代码0。
  • 回溯时,走右分支则生成代码1。

        使用一个指针数组作为哈夫曼编码表,存放每个字符编码串的首地址(依旧是从1号单元开始使用):

typedef char** HuffmanCode;		//通过动态分配数组存储哈夫曼表

    在动态开辟数组时,会发现:由于当前并不清楚每个字符编码的长度,所以不能为每个字符分配合适的存储空间。为了解决这个麻烦,通常会动态分配一个长度为n的一维数组作为临时的存储。

        注意:由于求解编码的过程是向上回溯的,所以对于每个字符,得到的编码顺序是从右往左的。因此,在将编码往临时的一维数组cd内存储时,顺序也是从后向前的(即字符的第一个编码应该存储到 cd[n - 2] 中,以此类推)。

【参考代码】

void CreateHuffmanCode(HuffmanTree HT, HuffmanCode& HC, int n)
{//将从叶子到根结点回溯求得的每个字符的哈夫曼编码,存储到编码表HC中
	HC = new char* [n + 1];				//分配存储n个字符编码的编码表空间
	char* cd = new char[n];				//分配临时存放每个字符编码的动态存储空间

	cd[n - 1] = '\0';					//编码结束符
	for (int i = 1; i <= n; i++)		//逐字符求编码
	{
		int start = n - 1;				//从后往前写入
		int c = i;						//从每个叶子结点开始
		int f = HT[i].parent;
		while (f != 0)					//直到回到根结点为止
		{
			--start;
			if (HT[f].lchild == c)		//左、右分支对应不同的代码
				cd[start] = '0';
			else
				cd[start] = '1';

			c = f;						//继续回溯
			f = HT[f].parent;
		}
		HC[i] = new char[n - start];	//分配空间
		strcpy(HC[i], &cd[start]);		//将求得的编码复制到HC中
	}
	delete[] cd;
}

【例子】

        设在一系统通信内只可能出现8种字符,出现概率分别为0.05,0.29,0.07,0.08,0.14,0.23,0.03,0.11。

        为设计哈夫曼编码,将概率作为对应字符的权值,得到:w = (5, 29, 7, 8, 14, 23, 3, 11)。其对应的哈夫曼表为:


文件的编码和译码

        在完成字符集的哈夫曼编码表后,就可以进行编码和译码的操作。

对数据文件进行编码的过程是:

  1. 依此读入文件中的字符;
  2. 在哈夫曼编码表HC中找到此字符;
  3. 将对应字符转换为编码表中存放的编码串。

对编码后的文件进行译码的过程是:

  1. 依此读入文件中的二进制码;
  2. 从哈夫曼树的根结点(即HT[m])出发,读入0,则进左孩子;读入1,则进右孩子。一旦到达某一叶子HT[i],则译出相应的字符编码HC[i];
  3. 循环上述步骤,直到文件结束。

二叉树的运用 - 利用二叉树求解表达式

        对于任一算术表达式,都可以使用二叉树进行表示。而当对应二叉树创建完毕时,就可以利用对于二叉树的操作,进行表达式的求值运算。

中缀表达式树的创建

        假设:运算符均为双目运算符。

        由于创建的表达式树需要准确表达运算的次序,所以需要考虑各个运算符之间的优先级。为此,可以借助一个运算符栈,来存储未处理的运算符。

        由两个操作数与一个运算符即可建立一棵表达式二叉树,而该二叉树又可以是另一棵树的子树。可以结组一个表达式树栈,以此来暂存已建立好的树。

【参考代码】

    假设每个表达式的开头和结尾均为“#”。

两个工作栈:

  • OPTR,用来暂存运算符。
  • EXPT,用来暂存已建立好的表达式树的根结点。

【参考代码】

BiTree InitExpTree()
{
	SqStack EXPT;
	LinkStack OPTR;
	InitStack(EXPT);	//初始化栈
	InitLinkStack(OPTR);
	LinkPush(OPTR, '#');		//将表达式起始符‘#’压入栈顶

	char ch = 0;
	cin >> ch;

	while (ch != '#' || LinkGetTop(OPTR) != '#')	//表达式未扫描完毕 || OPTR栈顶元素不是‘#’
	{
		if (!In(ch))	//ch不是运算符
		{
			BiTree T = new BiTNode;
			CreateExpTree(T, NULL, NULL, ch);	//以ch为根创建一棵只有根结点的二叉树
			Push(EXPT, T);					//将二叉树根结点T压入EXPT栈内
			cin >> ch;
		}
		else
		{
			switch (Precede(LinkGetTop(OPTR), ch))	//比较二者的优先级
			{
			case '<':
			{
				LinkPush(OPTR, ch);					//当前字符入栈
				cin >> ch;
				break;
			}
			case '>':
			{
				char theta = 0;
				BiTree T = new BiTNode;
				BiTree a = new BiTNode;
				BiTree b = new BiTNode;
				LinkPop(OPTR, theta);				//弹出OPTR栈顶的运算符
				Pop(EXPT, b);				//弹出EXPT栈顶的两个运算数
				Pop(EXPT, a);
				CreateExpTree(T, a, b, theta);	//创建新的子树
				Push(EXPT, T);
				break;
			}
			case '=':							//仅当:OPTR栈顶元素是'(',字符ch是')'
			{
				char x = 0;
				LinkPop(OPTR, x);
				cin >> ch;
				break;
			}
			}
		}
	}
	BiTree T = new BiTNode;
	Pop(EXPT, T);
	return T;
}

    由于字符的限制,上述算法只能进行10以内的运算。

【算法分析】

  • 时间复杂度:遍历表达式中的每个字符,故时间复杂度为O(n)
  • 空间复杂度:算法运行时所占用的辅助空间主要有OPTR栈和EXPT栈,它们的大小之和不会超过n,故空间复杂度为O(n)

中缀表达式树的求值

【参考代码】

int EvaluateExpTree(BiTree T)
{
	int lvalue = 0, rvalue = 0;			///初始值均为0
	if (T->rchild == NULL && T->lchild == NULL)
		return T->data - '0';			//若当前结点为操作数,则返回该结点的对应数值
	else								//若结点为操作符
	{
		lvalue = EvaluateExpTree(T->lchild);
		rvalue = EvaluateExpTree(T->rchild);
		return GetValue(T->data, lvalue, rvalue);	//对取得的两个操作数进行计算
	}
}

    其中,函数GetValue就是对加、减、乘、除四种运算进行处理的函数。

        该算法的时间复杂度和空间复杂度均为O(n)

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值