语义分割数据集
语义分割数据集的mask图片并不是8bit的灰度图,而是png图片特有的通过调色盘去设置颜色的单通道8bit彩色图片,通过调色盘对应的值来显示对应的颜色,并且mask对应的值也对应着类别的标签。
当通过cv2去对图片进行扩充的时候,cv2的图片读取方式的原因,会将图片读取成3通道的彩图,并且保存时会保存成24bit的图片(即3通道8bit),所以语义分割数据集的mask最好不要用cv2进行读取处理,本文方法使用的是PIL库的Image方法对mask图片进行读取,并且使用PIL库的中的方法对图片进行操作扩充。参考文章:https://blog.csdn.net/qq_20852429/article/details/79137777
# -*- coding:utf-8 -*-
"""数据增强
1. 翻转变换 flip
2. 随机修剪 random crop
3. 色彩抖动 color jittering
4. 平移变换 shift
5. 尺度变换 scale
6. 对比度变换 contrast
7. 噪声扰动 noise
8. 旋转变换/反射变换 Rotation/reflection
"""
from PIL import Image, ImageEnhance, ImageOps, ImageFile
import numpy as np
import random
import threading, os, time
import logging
logger = logging.getLogger(__name__)
ImageFile.LOAD_TRUNCATED_IMAGES = True
class DataAugmentation:
"""
包含数据增强的7种方式
"""
def __init__(self):
pass
@staticmethod
def openImage(image):
return Image.open(image, mode="r")
@staticmethod
def randomRotation(image, label, mode=Image.BICUBIC):
"""
对图像进行随机任意角度(0~360度)旋转
:param mode 邻近插值,双线性插值,双三次B样条插值(default)
:param image PIL的图像image
:return: 旋转转之后的图像
"""
random_angle = np.random.randint(1, 360)
random_trans = np.random.randint(0, 6)
# label = label.rotate(random_angle, Image.NEAREST).convert(mode="P", )
# return image.rotate(random_angle, mode), label.rotate(random_angle, Image.NEAREST)
return image.transpose(random_trans), label.transpose(random_trans)
# return image.rotate(random_angle, mode), label
# 暂时未使用这个函数
@staticmethod
def randomCrop(image, label):
"""
对图像随意剪切,考虑到图像大小范围(68,68),使用一个一个大于(36*36)的窗口进行截图
:param image: PIL的图像image
:return: 剪切之后的图像
"""
image_width = image.size[0]
image_height = image.size[1]
crop_win_size = np.random.randint(300, 500)
random_region = (
(image_width - crop_win_size) >> 1, (image_height - crop_win_size) >> 1, (image_width + crop_win_size) >> 1,
(image_height + crop_win_size) >> 1)
return image.crop(random_region), label.crop(random_region)
@staticmethod
def randomColor(image, label):
"""
对图像进行颜色抖动
:param image: PIL的图像image
:return: 有颜色色差的图像image
"""
random_factor = np.random.randint(0, 31) / 10. # 随机因子
color_image = ImageEnhance.Color(image).enhance(random_factor) # 调整图像的饱和度
random_factor = np.random.randint(10, 21) / 10. # 随机因子
brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor) # 调整图像的亮度
random_factor = np.random.randint(10, 21) / 10. # 随机因1子
contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor) # 调整图像对比度
random_factor = np.random.randint(0, 31) / 10. # 随机因子
return ImageEnhance.Sharpness(contrast_image).enhance(random_factor), label # 调整图像锐度
@staticmethod
def saveImage(image, path):
image.save(path)
def makeDir(path):
if not os.path.exists(path):
if not os.path.isfile(path):
# os.mkdir(path)
os.makedirs(path)
return 0
else:
return 1
def imageOps(func_name, image, label, img_des_path, label_des_path, img_file_name, label_file_name, times=5):
funcMap = {"randomRotation": DataAugmentation.randomRotation,
"randomCrop": DataAugmentation.randomCrop,
"randomColor": DataAugmentation.randomColor,
# "randomGaussian": DataAugmentation.randomGaussian
}
if funcMap.get(func_name) is None:
logger.error("%s is not exist", func_name)
return -1
for _i in range(0, times, 1):
new_image, new_label = funcMap[func_name](image, label)
DataAugmentation.saveImage(new_image, os.path.join(img_des_path, func_name + str(_i) + img_file_name))
DataAugmentation.saveImage(new_label, os.path.join(label_des_path, func_name + str(_i) + label_file_name))
opsList = {"randomRotation", "randomCrop", "randomColor"}
# opsList = {"randomRotation"}
def threadOPS(img_path, new_img_path, label_path, new_label_path):
"""
多线程处理事务
:param src_path: 资源文件
:param des_path: 目的地文件
:return:
"""
# img path
if os.path.isdir(img_path):
img_names = os.listdir(img_path)
else:
img_names = [img_path]
# label path
if os.path.isdir(label_path):
label_names = os.listdir(label_path)
else:
label_names = [label_path]
img_num = 0
label_num = 0
# img num
for img_name in img_names:
tmp_img_name = os.path.join(img_path, img_name)
if os.path.isdir(tmp_img_name):
print('contain file folder')
exit()
else:
img_num = img_num + 1;
# label num
for label_name in label_names:
tmp_label_name = os.path.join(label_path, label_name)
if os.path.isdir(tmp_label_name):
print('contain file folder')
exit()
else:
label_num = label_num + 1
if img_num != label_num:
print('the num of img and label is not equl')
exit()
else:
num = img_num
for i in range(num):
img_name = img_names[i]
label_name = label_names[i]
tmp_img_name = os.path.join(img_path, img_name)
tmp_label_name = os.path.join(label_path, label_name)
# 读取文件并进行操作
image = DataAugmentation.openImage(tmp_img_name)
label = DataAugmentation.openImage(tmp_label_name)
threadImage = [0] * 3
_index = 0
for ops_name in opsList:
threadImage[_index] = threading.Thread(target=imageOps,
args=(ops_name, image, label, new_img_path, new_label_path, img_name,
label_name))
threadImage[_index].start()
_index += 1
time.sleep(0.2)
if __name__ == '__main__':
threadOPS(r"D:\datasets\EddyDataset\JPEGImages", # 原image
r"D:\datasets\Augmentor\JPEGImages", # 扩充的image
r"D:\datasets\EddyDataset\SegmentationClass", # 原mask
r"D:\datasets\Augmentor\SegmentationClass") # 扩充的mask
原文章使用多线程以及Image方法同时对image和mask同时扩充,但是高斯方法有些问题,这里就把高斯方法去掉,还有一个地方不同的就是在对图像旋转的时候,扩充的mask也会无法生成,仅仅只是生成黑色的图片,经过实验发现transpose方法进行反转之后的mask图像可以保存,所以将原有的rotate函数改成了transpose函数来对数据进行扩充。
由于生成的图片名称为扩充方法加数值的形式,本文额外增加了重命名代码:
import os
def reName(img_path, label_path, img_save_path, label_save_path, img_name, img_type, label_type, name):
if not os.path.exists(img_save_path):
os.makedirs(img_save_path)
if not os.path.exists(label_save_path):
os.makedirs(label_save_path)
os.renames(os.path.join(img_path, img_name.split('.')[0] + img_type), os.path.join(img_save_path, name + img_type))
os.renames(os.path.join(label_path, img_name.split('.')[0] + label_type), os.path.join(label_save_path, name + label_type))
print(f"save file:{name + img_type}")
if __name__ == "__main__":
img_path = r"D:\datasets\Augment\JPEGImages"
png_path = r"D:\datasets\Augment\SegmentationClass"
img_save_path = r"D:\datasets\Augment\rename\JPEGImages"
png_save_path = r"D:\datasets\Augment\rename\SegmentationClass" # 重命名的image,mask保存的路径和源路径相同即可
img_list = os.listdir(img_path)
num = 0
for name in img_list:
name_ = str(num).zfill(6)
reName(img_path, png_path, img_save_path, png_save_path, name, ".jpg", ".png", name_)
num += 1