论战大原题

题目描述
Abwad最终造出了一道惊世骇俗的难题——在线询问动态仙人球上第k长的路径的所有后缀的不同的回文子串数,可是nbc只瞄了一眼题面,就说出了Abwad冥思苦想了三天三夜才得到的算法。
为了扭转劣势,Abwad决定和nbc论战大原题。规则很简单,即给出一道原题,比谁能更快地找出原题的出处并将其AC。现在摆在他们面前的是这样一道原题:
给定一个n个点m条边的无向图。定义一条路径的长度为路径上最小边的权值。定义dist(i,j)为起点为i,终点为j的长度最长的路径的长度。求出第k大的dist(i,j)(i< j)。
Abwad依稀记得这道题曾经出现在一场名叫“恩偶爱皮”的比赛中。在搜索引擎的帮助下,他开始以50Hz的手速写起了代码。作为旁观者的你,一眼就看出Abwad看错题了。为了证明他是错的,请你写个程序,求出答案。

输入
第一行两个整数n,m,k。
接下来m行每行三个整数u,v,w,表示u到v存在一条长度为w的无向边。
输出
一行一个整数ans,为第k大的dist(i,j)
样例输入
4 5 2
1 2 4
4 3 5
2 3 2
4 1 1
3 1 3
样例输出
4

提示
【样例1说明】
dist(1,2)=4 dist(1,3)=3 dist(1,4)=3 dist(2,3)=3 dist(2,4)=3 dist(3,4)=5
故第2大的dist(i,j)为4
对于所有的数据,保证n≤100000,m≤min(n2,200000),k≤n(n-1)/2且图连通,w≤109。

最大生成树,每次合并时计算方案数判断即可。

var
f,u,v,w,sum:array[0..200011] of int64;
num,k,root1,root2,n,m:int64;
i,j:longint;
procedure sw(var x,y:int64);
var
t:int64;
begin
  t:=x;
  x:=y;
  y:=t;
end;

function find(i:int64):int64;
begin
  if f[i]<>i then f[i]:=find(f[i]);
  exit(f[i]);
end;

procedure sort(l,r:int64);
var
i,j,m:int64;
begin
  i:=l;j:=r;m:=w[(i+j) div 2];
  repeat
    while w[i]>m do inc(i);
    while w[j]<m do dec(j);
    if i<=j then
    begin
      sw(w[i],w[j]);
      sw(u[i],u[j]);
      sw(v[i],v[j]);
      inc(i);dec(j);
    end;
  until i>j;
  if i<r then sort(i,r);
  if j>l then sort(l,j);
end;

begin
  readln(n,m,k);
  for i:=1 to n do
  begin
    f[i]:=i;
    sum[i]:=1;
  end;
  for i:=1 to m do
    readln(u[i],v[i],w[i]);
  sort(1,m);
  num:=0;
  for i:=1 to m do
  begin
    root1:=find(u[i]);
    root2:=find(v[i]);
    if root1<>root2 then
    begin
      num:=num+sum[root1]*sum[root2];
      if num>=k then begin write(w[i]); exit; end;
      f[root1]:=root2;
      sum[root2]:=sum[root2]+sum[root1];
    end;
  end;
end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值