题目描述
Abwad最终造出了一道惊世骇俗的难题——在线询问动态仙人球上第k长的路径的所有后缀的不同的回文子串数,可是nbc只瞄了一眼题面,就说出了Abwad冥思苦想了三天三夜才得到的算法。
为了扭转劣势,Abwad决定和nbc论战大原题。规则很简单,即给出一道原题,比谁能更快地找出原题的出处并将其AC。现在摆在他们面前的是这样一道原题:
给定一个n个点m条边的无向图。定义一条路径的长度为路径上最小边的权值。定义dist(i,j)为起点为i,终点为j的长度最长的路径的长度。求出第k大的dist(i,j)(i< j)。
Abwad依稀记得这道题曾经出现在一场名叫“恩偶爱皮”的比赛中。在搜索引擎的帮助下,他开始以50Hz的手速写起了代码。作为旁观者的你,一眼就看出Abwad看错题了。为了证明他是错的,请你写个程序,求出答案。
输入
第一行两个整数n,m,k。
接下来m行每行三个整数u,v,w,表示u到v存在一条长度为w的无向边。
输出
一行一个整数ans,为第k大的dist(i,j)
样例输入
4 5 2
1 2 4
4 3 5
2 3 2
4 1 1
3 1 3
样例输出
4
提示
【样例1说明】
dist(1,2)=4 dist(1,3)=3 dist(1,4)=3 dist(2,3)=3 dist(2,4)=3 dist(3,4)=5
故第2大的dist(i,j)为4
对于所有的数据,保证n≤100000,m≤min(n2,200000),k≤n(n-1)/2且图连通,w≤109。
最大生成树,每次合并时计算方案数判断即可。
var
f,u,v,w,sum:array[0..200011] of int64;
num,k,root1,root2,n,m:int64;
i,j:longint;
procedure sw(var x,y:int64);
var
t:int64;
begin
t:=x;
x:=y;
y:=t;
end;
function find(i:int64):int64;
begin
if f[i]<>i then f[i]:=find(f[i]);
exit(f[i]);
end;
procedure sort(l,r:int64);
var
i,j,m:int64;
begin
i:=l;j:=r;m:=w[(i+j) div 2];
repeat
while w[i]>m do inc(i);
while w[j]<m do dec(j);
if i<=j then
begin
sw(w[i],w[j]);
sw(u[i],u[j]);
sw(v[i],v[j]);
inc(i);dec(j);
end;
until i>j;
if i<r then sort(i,r);
if j>l then sort(l,j);
end;
begin
readln(n,m,k);
for i:=1 to n do
begin
f[i]:=i;
sum[i]:=1;
end;
for i:=1 to m do
readln(u[i],v[i],w[i]);
sort(1,m);
num:=0;
for i:=1 to m do
begin
root1:=find(u[i]);
root2:=find(v[i]);
if root1<>root2 then
begin
num:=num+sum[root1]*sum[root2];
if num>=k then begin write(w[i]); exit; end;
f[root1]:=root2;
sum[root2]:=sum[root2]+sum[root1];
end;
end;
end.