搜索与图论(二)

读y总课有感(dog)

知识结构

最短路问题(图论)最主要考察的就是建图,怎么把原问题画成,抽象成最短路问题(如何建立点和边….)然后去套用下面的这些模板。所以以下算法的原理不会讲解,可以百度。现在主要讲如何去实现,抽象。(相关的题目acwing有)

  • 单源最短路

    从一个点到其他所有点的最短路问题。(求从一号点到n号点的最短路)

    ​ 这个最短路又分为两类:

    • 所有边都是正权值的图

      ​ 有两个算法可以处理:

      • 朴素版本Dijkstra算法(O(n2)其实准确来说是O(n2+m),n是点的数量,m是边的数量)

      • 堆优化的Dijkstra算法(O(mlogn)) 所以不一定朴素版比堆优化慢,朴素版适合稠密图(边数和n2差不多)。而当边和点的个数1都差不多是105,则要用优化。不然五次方再平方就太大了

    • 存在负权边

      ​ 也有两种实现方式

      • Bellman-Ford算法(O(nm))

      • SPFA算法 可以看成对于上一个算法的优化,一般情况下是线性O(m),最坏是O(nm)。虽说是个优化,但并不是所有算法用SPFA都可以做。要是对经过的边数有限制(<=k),则只能用上一个

  • 多源汇最短路

    起点和终点不确定了(任选两个点的最短路问题,求很多起点到终点的最短路)

    使用Floyd算法(O(N3))

我们发现上面并没有区分有向图和无向图,因为无向图只要连两条变就可以了

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cPlAIOMU-1639622988338)(image/48.png)]

朴素版Dijkstra算法

过程

1:先初始化距离。把一号点(起点)的距离存入数组赋值为0(dis[1]=0),其他点是赋值为无穷,dis[i]=无穷。并且再建立一个数组s,以后这里面存入已经确定最短距离的点。

2:进行for循环(0——n个点),每一次确定一个点的最短路。先找到一个不在s数组里面的却已经知道最短路径的点t,先把它存入s,再用它来推出与它相连接的那些点最短距离(每个点取min(dist[j], dist[t] + g[t][j])来重新赋值)。(如第一次,s数组无值,而已知的点起点的距离一定是最小的,0。把它存入s。然后2号点和三号点的dis变为2和4第一次结束。再进行第二次,已知最小的t是2号点,通过min(dist[3], dist[2] + g[2][3]得出3号点的值变为3)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dsNIHw66-1639622988340)(image/42.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dHscQ0nM-1639622988340)(image/43.png)]

有一种dp的感觉,从前面的状态退出后面的状态。

外层一次循环,内层找最小值又以此循环,n2

并且这种算法,用于稠密图,之前讲过,它用邻接矩阵来存。(稀疏图用邻接表)

复杂度分析

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Csty7O4R-1639622988341)(image/44.png)]

找最小点赋值给t,在n次循环里每一遍又要找n次。

用t更新边的距离,总次数是m次(这里也是n2,在稠密图里n2和m是同个级别)

模板
时间复杂是 O(n2+m), n 表示点数,m 表示边数
int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i ++ )
    {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}
题目
Dijkstra求最短路 I

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n号点,则输出 −1。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 −1。

数据范围

1≤n≤500,
1≤m≤105, (看出是稠密图)
图中涉及边长均不超过10000。

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3
存在重边和自环,重边:两个点之间有多条边 自环:自己出发指向自己。在最短路问题,自环不影响,有多条边的话则保存最短的边。
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 510;
int n, m;
int g[N][N];
int dis[N];
bool st[N]; //判断这个点有没有设定最短路
int dij()
{
    memset(dis, 0x3f, sizeof dis);
    dis[1] = 0;
    for (int i = 0; i < n; i++)
    {
        int t = -1; //刚开始t还没确定,设为-1
        for (int j = 1; j <= n; j++)
            if (!st[j] && (t == -1 || dis[t] > dis[j]))
                t = j;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j++)
            dis[j] = min(dis[j], dis[t] + g[t][j]);

        st[t] = true;//这个点已经确定最小值,存入s数组
    }
    if (dis[n] == 0x3f3f3f3f) //如果不连通的话
        return -1;
    return dis[n];
}
int main()
{
    scanf("%d%d", &n, &m);
    memset(g, 0x3f, sizeof g);
    while (m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = min(g[a][b], c);
    }
    int t = dij();
    cout << t;
}

堆优化版Dijkstra

过程

如果上面那题,n再大一点,就会爆掉。所以要去优化。

上面那个Dijkstra算法,最花时间得到就在于找到最小值(n2),我们发现这个可以用以前学的堆去找,复杂度变为O(1),然后再堆中更新值是logn,更新m次,是mlogn。(稀疏图是每次遍历从t出去的所有边,t会遍历1-n。就等于遍历了总边数m。如遍历1号点的所有边,1->2,1->4。再遍历2号点,2->3,2->4。3号4号没有边)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-obMDdnW5-1639622988342)(image/45.png)]

​ 因为是稀疏图(点的个数太多了),用邻接矩阵(二维数组)存不下,所以改为邻接表。

这里堆有两种实现方式

  • 手写堆 (增加映射)

  • c++的优先队列。但它不支持像手写堆修改元素的操作的,它实现的方法是往里面插入新的数,这可能会造成点变成m个,但由于是稀疏图,m<=n2,则其实也和原本的n个差不多。所以一半堆优化版本都用优先队列。

模板
typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

题目
Dijkstra求最短路 II
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 100010;
int n, m;
int h[N], w[N], e[N], ne[N], idx; // w表示权重
int dis[N];
bool st[N]; //判断这个点有没有设定最短路
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int dij()
{
    memset(dis, 0x3f, sizeof dis);
    dis[1] = 0;
    {
        priority_queue<PII, vector<PII>, greater<PII>> heap; //从小到大出队,优先队列的写法
        heap.push({0, 1});                                   //存入距离是0编号是1的点,起点。
        while (heap.size())
        {
            auto t = heap.top();
            heap.pop();
            int ver = t.second, distance = t.first;
            if (st[ver])
                continue;
            st[ver] = true;
            for (int i = h[ver]; i != -1; i = ne[i])
            {
                int j = e[i];
                if (dis[j] > distance + w[i])
                {
                    dis[j] = distance + w[i];
                    heap.push({dis[j], j});
                }
            }
        }
    }
    if (dis[n] == 0x3f3f3f3f) //如果不连通的话
        return -1;
    return dis[n];
}
int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    while (m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c); //用邻接表存,重边就无所谓了,算法保证一定会选最短的边
    }
    int t = dij();
    cout << t;
}

Bellman-Ford算法

过程

for循环n次。每一次都还循环所有边(m次)(a,b,w 表示存在一条从a走向b的边,权重是w),所以这个算法有两重循环。这个算法存边的方式可以随便存,不一定用邻接表用结构体也行,只要能遍历就行。每一次遍历(循环)边的时候还同时要进行更新(松弛操 作)dist[b]=min(dist[b],dist[a]+w).循环完n次之后,保证了所有的边都满足dist[b]<=dist[a]+w。

它是用于处理有负权边的最短路,但注意,要是题目存在负权回路的时候(1,2,3 2,3,-4 3,4,-5如这三条边,你发现绕一圈反而路程-6),最小值是不存在的,因为每走完这样的回路一圈,走的路程不增反减,这样不停的转,会减到无穷小,但有一个情况注意,要是这个负权回路与我们最终要去的那个点没有一点关系(走负权回路根本到不了目的地),那么它就不影响最小值。而且当题目限制所走的边的条数的话,有负权回路也没事,因为就不会不停地减了。

这里的迭代n次,这个意思:如果是刚循环完k次,则就已经确定了从1号点经过不超过k条边的最短路。而当你第n次迭代,你还更新了,则图里有一条最短路一定是至少走了n条边(正常情况要有n+1个点才有n条边),因为图就n个点,所以一定存在一个环(如从t点出发又指回t点),而能这样在最短路算法走的,就一定是负环。所以第n次迭代更新,可以判断出有负环。但这种找负环时间复杂度较高,我们判断有无负环,一般使用SPFA算法

SPFA算法的使用,要在无负环的情况下,它一般情况下都是优于BF算法的,所以y总说正权用dj,有负用SPFA。但有些情况是只能用BF的,比如下面这题限制了要走的边数量。

模板
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。

int n,m;       // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离

struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
} edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) //防止可能虽然有起点到不了的点,但也会因为负权边使原来的0x3f3f3f减小一点,要是>0x3f3f3f3f,就会把这点默认成可以从起点过来
        return -1;
    return dist[n];
}
题目
有边数限制的最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出从 11 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible

注意:图中可能 存在负权回路

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示从 11 号点到 n 号点的最多经过 k 条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围

1≤n,k≤500,1≤m≤10000,
任意边长的绝对值不超过 10000。

输入样例:

3 3 1
1 2 1
2 3 1
1 3 3

输出样例:

3
此题可能存在负环。
且这题在每次边的松弛操作前还要进行备份处理,防止串连。因为它加上了边数的限制,如图,假如从1->3,若k为1的话,我们就绝对不能选择从1->2->3的路程,尽管它的路程更短。而如果不加备份,它枚举所有边的时候可能发生串连,就是我们第一次枚举的边是1->2,那么dist[2]=1,此时dist[3]还是等于无穷大(初值)。而当更新到三号点的时候,我们是不能拿上一次算好的dist[2]=1来参与这次边的计算的(这样计算结果是dist[3]=2),应该还是选之前的dist[2]=无穷,算出来dist[3]=3。这样做是为了满足题目对边数的限制。为了防止这个情况,我们就可以存储上一轮迭代的结果,来进行使用。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8i6fTfCV-1639622988342)(image/46.png)]

#include <string>
#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 510, M = 100010;
int n, m, k;
int dist[N], backup[N];
struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
} edges[M];
void bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < k; i++)//限制k条
    {
        memcpy(backup, dist, sizeof dist);//备份
        for (int j = 0; j < m; j++)
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            dist[b] = min(dist[b], backup[a] + w);
        }
    }
    if (dist[n] > 0x3f3f3f3f / 2)
        //防止可能循环完之后虽然起点到不了这个点,但也会因为负权边使一些点对这个点造成影响原来的0x3f3f3f减小一点,要是>0x3f3f3f3f,就会把这点默认成可以从起点过来。
        cout << "impossible" << endl;
    else
        cout << dist[n] << endl;
}
int main()
{
    cin >> n >> m >> k;
    for (int i = 0; i < m; i++)
    {
        int a, b, w;
        cin >> a >> b >> w;
        edges[i] = {a, b, w};
    }
    bellman_ford();//不像模板一样返回-1,是怕它最短路径就是-1,这样子的话答案是-1,而你就输出impossible了
  }  
/*  return -1;
    return dist[n];
}
int main()
{
    cin >> n >> m >> k;
    for (int i = 0; i < m; i++)
    {
        int a, b, w;
        cin >> a >> b >> w;
        edges[i] = {a, b, w};
    }
    int t = bellman_ford();
    if (t == -2)
        cout << "impossible" << endl;
    else
        cout << t << endl;*/

SPFA算法

定义:

SPFA算法比较好,可以用于有负值的题,也可以用于无负值的题目。它处理正值有时候还比dj算法快。(除非有些题目故意卡你,所以我们可以试着先用SPFA,不行再用堆优化dj算法)

SPFA看成是对BF算法的一个优化,感觉BF算法很傻,每一次遍历都要循环所有边来更新,但其实每一次迭代却不一定都会更新dist[b]=min(dist[b],dist[a]+w)这个式子,SPFA就是对这的一个优化,用宽搜(队列)来做优化,(因为我们发现只有dist[a]变小了,dist[b]才会变化)。所以我们就可以把所有变小的存入队列,只要队列不空,就还可以松弛。

基本思路就是:我更新过谁,就拿更新过的点来更新别人。

长得像dj算法。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5WOoyN1x-1639622988343)(image/47.png)]

并且SPFA算法还能判断是否有负环,BF算法判断负环太慢了(O(nm))。

原理:在更新dist数组的时候(dist[x]表示当前从1号点(起点)到x的最短路径。判断负环还会另设一个cnt数组,cnt[x]存储1到x的最短路中经过的点数),如果该过程中cnt[x]>=n,代表从1-x至少经过了n条边,则有n+1个点,由抽屉原理一定有两个点相同,所以存在环(有环的话一定是负环,否则在最短路径的条件下是不可能走正环的,走一圈回来路程增加了)。与BF判断负环的思想类似

模板
spfa 算法(队列优化的Bellman-Ford算法)
时间复杂度 平均情况下 O(m),最坏情况下 O(nm), n 表示点数,m 表示边数
int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

spfa判断图中是否存在负环
时间复杂度是 O(nm), n 表示点数,m 表示边数
int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}
题目
spfa求最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible

数据保证不存在负权回路。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 impossible

数据范围

1≤n,m≤105,图中涉及边长绝对值均不超过 10000。

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2
SPFA每次只更新队列里的边,不存在一次走两步的情况,不需要backup数组。
且本题不存在负环, 0x3f3f3f3f不用除2。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 100010;
int n, m;
int h[N], w[N], e[N], ne[N], idx; // w表示权重
int dist[N];
bool st[N];
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
void spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);    // 1号点放入队列
    st[1] = true; //防止队列存入重复的点

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false; //不在队列里了

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入队列
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    if (dist[n] == 0x3f3f3f3f)
        puts("impossible");
    else
        printf("%d\n", dist[n]);
}
int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    while (m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c); 
    }
    spfa();
}
spfa判断负环

给定一个 n个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你判断图中是否存在负权回路。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

如果图中存在负权回路,则输出 Yes,否则输出 No

数据范围

1≤n≤2000 1≤m≤10000 。图中涉及边长绝对值均不超过 10000。

输入样例:

3 3
1 2 -1
2 3 4
3 1 -4

输出样例:

Yes
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 100010;
int n, m;
int h[N], w[N], e[N], ne[N], idx; // w表示权重
int dist[N], cnt[N];
bool st[N];
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i++)
    {
        q.push(i); //不是只加1号点了。因为题目判断是不是存在负环,而不是判断从1开始的负环
        st[i] = true;
    }
    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n)
                    return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return false; //都不返回true的话,则最后返回false
}
int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    while (m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    if (spfa())
    {
        puts("Yes");
    }
    else
        puts("No");
}

发现今天讲的都是有向图,没讲无向图,因为无向图是特殊的有向图,只要建立两条边就可以了。

Floyd算法

定义

用邻接矩阵来存储所有的边,d[i][j].然后三层循环,k从1-n,i从1-n,j从1-n,然后再更新d[i][j] = min(d[i][j], d[i][k] + d[k][j])。不能存在负权回路(负环)

原理基于动态规划。d[k,i,j]:从i这个点只经过1-k这些中间点,到达j的最短距离。求它是从d[k-1,i,k]+d[k-1,k,j]转移过来的,发现第一维没什么用,可以优化掉,所以变成d[i][k] + d[k][j] (与01背包类似,具体dp课讲)

模板
时间复杂度是 O(n3), n 表示点数
初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

题目
Floyd求最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。

输出格式

共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤200 1≤k≤n2 1≤m≤20000
图中涉及边长绝对值均不超过 1000010000。

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
存在重边和自环,重边保留最短路,自环直接删去
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 210, INF = 1e9; // 3f3f3f3也可以
int n, m, Q;
int d[N][N];
void floyd()
{
    for (int k = 1; k <= n; k++)
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main()
{
    scanf("%d%d%d", &n, &m, &Q);
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            if (i == j)
                d[i][j] = 0;
            else
                d[i][j] = INF;
    while (m--)
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        d[a][b] = min(d[a][b], w);
    }
    floyd();
    while (Q--)
    {
        int a, b;
        cin >> a >> b;
        if (d[a][b] > INF / 2) //可能存在负权边
            puts("impossible");
        else
            cout << d[a][b]<<endl;
    }
    return 0;
}

#### 输出样例:

impossible
1




存在重边和自环,重边保留最短路,自环直接删去




```c++
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 210, INF = 1e9; // 3f3f3f3也可以
int n, m, Q;
int d[N][N];
void floyd()
{
    for (int k = 1; k <= n; k++)
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main()
{
    scanf("%d%d%d", &n, &m, &Q);
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            if (i == j)
                d[i][j] = 0;
            else
                d[i][j] = INF;
    while (m--)
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        d[a][b] = min(d[a][b], w);
    }
    floyd();
    while (Q--)
    {
        int a, b;
        cin >> a >> b;
        if (d[a][b] > INF / 2) //可能存在负权边
            puts("impossible");
        else
            cout << d[a][b]<<endl;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值