题目描述 花花住在H 国。H 国有n 个城市,其中1 号城市为其首都。城市间有n-1
条单向道路。从任意一个城市出发,都可以沿着这些单向道路一路走到首都。事实上,从任何一个城市走到首都的路径是唯一的。
过路并不是免费的。想要通过某一条道路,你必须使用一次过路券。H 国一共有m 种过路券,每张过路券以三个整数表示:v k w:你可以在城市v
以价格w 买到一张过路券。这张券可以使用k 次。这意味着,拿着这张券通过了k 条道路之后,这张券就不能再使用了。
请注意你同一时间最多只能拥有最多一张过路券。但你可以随时撕掉手中已有的过路券,并且在所在的城市再买一张。 花花家在首都。他有q
位朋友,他希望把这些朋友们都邀请到他家做客。所以他想要知道每位朋友要花多少路费。他的朋友们都很聪明,永远都会选择一条花费最少的方式到达首都。
花花需要准备晚餐去了,所以他没有时间亲自计算出朋友们将要花费的路费。你可以帮帮他么?输入 输入的第一行包含两个空格隔开的整数n 和m,表示H 国的城市数量和过路券的种数。 之后的n-1行各自包含两个数ai
和bi,代表城市ai到城市bi间有一条单向道路。 之后的m 行每行包括三个整数vi; ki 和wi,表示一种过路券。
下一行包含一个整数q,表示花花朋友的数量。 之后的q 行各自包含一个整数,表示花花朋友的所在城市。输出 输出共q 行,每一行代表一位朋友的路费。
样例输入 7 7
3 1
2 1
7 6
6 3
5 3
4 3
7 2 3
7 1 1
2 3 5
3 6 2
4 2 4
5 3 10
6 1 20
3
5 6 7
样例输出
10
22
5
提示
对于第一位朋友,他在5 号城市只能购买一种过路券,花费10 元并且可以使用3次。这足够他走到首都,因此总花费是10 元。对于第二位朋友,他在6 号城市只能购买20 元的过路券,并且只能使用一次。之后,他可以在3 号城市购买2 元,可以使用3
次的过路券走到首都。总花费是22 元。对于第三位朋友,他在7 号城市可以购买两种过路券。他可以花3 元买一张可以使用2次的券,然后在3 号城市再买一张2 元,可以使用3
次的券,走到首都。总花费是5 元,而且其他的购买方式不会比这种更省钱。• 对于40% 的数据:n, m, q <= 10, wi <= 10;
• 另有20% 的数据:n, m, q <= 500, wi <=100;
• 另有20% 的数据:n, m, q <= 5000, wi <= 1000;
• 对于100% 的数据:n, m, q <=10^5, wi <= 10000; 1 <= vi, ki <= n。
记忆化搜索,向他可以到的点搜索,记忆化就可以了。
var
tot,i,n,u,v,l,q,m:longint;
head,ret,next,cost,f,dp:array[0..200022] of longint;
function min(a,b:longint):longint;
begin
if a<b then exit(a) else exit(b);
end;
procedure ins(u,v,l:longint);
begin
tot:=tot+1;
ret[tot]:=v;
cost[tot]:=l;
next[tot]:=head[u];
head[u]:=tot;
end;
function dfs(u:longint):longint;
var
i,k,fa,num:longint;
begin
if u=1 then exit(0);
if dp[u]<>-1 then exit(dp[u]);
dp[u]:=maxlongint;
i:=head[u];
while i<>0 do
begin
k:=ret[i];
fa:=f[u];
num:=1;
while (fa>=1)and(num<=k) do
begin
dp[u]:=min(dp[u],dfs(fa)+cost[i]);
fa:=f[fa];
num:=num+1;
end;
i:=next[i];
end;
exit(dp[u]);
end;
begin
readln(n,m);
for i:=1 to n-1 do
begin
read(u);
readln(f[u]);
end;
for i:=1 to m do
begin
readln(u,v,l);
ins(u,v,l);
end;
readln(q);
fillchar(dp,sizeof(dp),$ff);
for i:=1 to q do
begin
readln(u);
writeln(dfs(u));
end;
end.