题目描述
一个字符串X被称为Y的anagram串,如果X是由Y的字符重新排序构成,不能移除或添加字符。比如”baba”, “abab”, “aabb”和”abba”是”aabb”的anagram串, “aaab”,”aab”和”aabc”则不是。
一个字符串X被称为Y的子串,如果X是从Y串中移除一些字符(0个字符也可以),并且剩下字符的顺序不变。比如”ac”,”abd”,”abcd”是”abcd”的子串,”ca”,”abb”,”abcde”则不是。
那么,一个字符串X称为Y的anagram子串,当且仅当存在一个字符串Z,X是Z的anagram串,Z是Y的子串。
对于一个长串S,罗老师想把他们分割成s1,s2,…,sn,也就是n个字符串,满足,当s1,s2,…,sn连接起来的时候刚好是S,同时,si是si+1的anagram子串(0
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#define inf 100000000
#define ll long long
#define mo 1000000007
using namespace std;
char ch[505];
int dp[505][505],sum[505][27],a[505];
bool flag[505][505];
int n;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
bool check(int l,int i,int r)请无视此过程
{
bool flag=1;
for (int k=1;k<=26;k++)
if (sum[i][k]-sum[l-1][k]>sum[r][k]-sum[i][k]){flag=0;break;}
return flag;
}
int dfs(int l,int r)
{
if (l==1) return 1;
if (dp[l][r]!=-1) return dp[l][r];
dp[l][r]=-inf;!//改了好久
for (int i=l-1;i;i--)
if (sum[r][a[i]]-sum[l-1][a[i]]>=sum[l-1][a[i]]-sum[i-1][a[i]]) dp[l][r]=max(dfs(i,l-1)+1,dp[l][r]);
else break;
return dp[l][r];
}.
int main()
{
scanf("%s",ch+1);
n=strlen(ch+1);
for (int i=1;i<=n;i++)
{
a[i]=ch[i]-'A'+1;
sum[i][ch[i]-'A'+1]++;
for (int j=1;j<=26;j++)
sum[i][j]+=sum[i-1][j];
for (int j=i;j<=n;j++) dp[i][j]=-1;
}
int ans=0;
for (int i=n;i;i--)
{
ans=max(dfs(i,n),ans);
}
cout<<ans;
return 0;
}