Description
JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版。该软件可以随机生成一些文章―――总是生成一篇长度固定且完全随机的文章—— 也就是说,生成的文章中每个字节都是完全随机的。如果一篇文章中至少包含使用者们了解的一个单词,那么我们说这篇文章是可读的(我们称文章a包含单词b,当且仅当单词b是文章a的子串)。但是,即使按照这样的标准,使用者现在使用的GW文本生成器v6版所生成的文章也是几乎完全不可读的。 ZYX需要指出GW文本生成器 v6生成的所有文本中可读文本的数量,以便能够成功获得v7更新版。你能帮助他吗?
Input
输入文件的第一行包含两个正整数,分别是使用者了解的单词总数N (<= 60),GW文本生成器 v6生成的文本固定长度M;以下N行,每一行包含一个使用者了解的单词。 这里所有单词及文本的长度不会超过100,并且只可能包含英文大写字母A..Z 。
Output
一个整数,表示可能的文章总数。只需要知道结果模10007的值。
Sample Input
2 2
A
B
Sample Output
100
题解
考虑计算不在不出现可读文本的文章数,记f[i][j]表示第i位,在AC自动机上,j节点的方案数。转移根据AC自动机上的连边转移。
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#define mod 10007
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int sum=1,tot=1,a[6001][26],point[6001];
int n,m,ans,f[101][6001];
char s[101];
bool danger[6001];
inline void ins()
{
int now=1,l=strlen(s);
for (int i=0;i<l;i++)
{
int t=s[i]-'A';
if (!a[now][t]) a[now][t]=++tot;
now=a[now][t];
}
danger[now]=1;
}
inline void acmach()
{
queue<int>q;q.push(1);
while (!q.empty())
{
int now=q.front();q.pop();
for (int i=0;i<26;i++)
if (a[now][i])
{
point[a[now][i]]=a[point[now]][i];
if (danger[a[point[now]][i]]) danger[a[now][i]]=1;//忘打WA了
q.push(a[now][i]);
}
else a[now][i]=a[point[now]][i];
}
}
inline void dp(int x)
{
for (int i=1;i<=tot;i++)
{
if (danger[i]||!f[x-1][i]) continue;
for (int j=0;j<26;j++)
f[x][a[i][j]]=(f[x][a[i][j]]+f[x-1][i])%mod;
}
}
int main()
{
for (int i=0;i<26;i++) a[0][i]=1;
n=read();m=read();
for (int i=1;i<=n;i++)
{
scanf("%s",s);
ins();
}
acmach();
f[0][1]=1;
for (int i=1;i<=m;i++) dp(i);
for (int i=1;i<=m;i++) sum=(sum*26)%mod;
for (int i=1;i<=tot;i++) if (!danger[i]) ans=(ans+f[m][i])%mod;
printf("%d",(sum-ans+mod)%mod);
return 0;
}