【bzoj1783】[Usaco2010 Jan]Taking Turns

Description

Farmer John has invented a new way of feeding his cows. He lays out N (1 <= N <= 700,000) hay bales conveniently numbered 1..N in a long line in the barn. Hay bale i has weight W_i (1 <= W_i <= 2,000,000,000). A sequence of six weights might look something like: 17 5 9 10 3 8 A pair of cows named Bessie and Dessie walks down this line after examining all the haybales to learn their weights. Bessie is the first chooser. They take turns picking haybales to eat as they walk (once a haybale is skipped, they cannot return to it). For instance, if cows Bessie and Dessie go down the line, a possible scenario is: * Bessie picks the weight 17 haybale * Dessie skips the weight 5 haybale and picks the weight 9 haybale * Bessie picks the weight 10 haybale * Dessie skips the weight 3 haybale and picks the weight 8 haybale Diagrammatically: Bessie | | 17 5 9 10 3 8 Dessie | | This scenario only shows a single skipped bale; either cow can skip as many as she pleases when it’s her turn.Each cow wishes to maximize the total weight of hay she herself consumes (and each knows that the other cow has this goal).Furthermore, a cow will choose to eat the first bale of hay thatmaximimizes her total weight consumed. Given a sequence of hay weights, determine the amount of hay that a pair of cows will eat as they go down the line of hay. 一排数,两个人轮流取数,保证取的位置递增,每个人要使自己取的数的和尽量大,求两个人都在最优策略下取的和各是多少。
Input

  • Line 1: A single integer: N * Lines 2..N+1: Line i+1 contains a single integer: W_i
    Output

  • Line 1: Two space-separated integers, the total weight of hay consumed by Bessie and Dessie respectively
    Sample Input

6

17

5

9

10

3

8

Sample Output

27 17

题解
f[i]表示先手取i的最大价值
g[i]表示先手取i后手的最大价值
g[i]=max(f[n],f[n+1]….f[i+1])=f[mx]
f[i]=a[i]+g[mx]

代码

#include<bits/stdc++.h>
#define pa pair<int,int>
typedef long long ll;
const int mod=20170408;
const int N=250005;
const double eps=0.00000001;
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int n,i,mx;
ll g[700005],f[700005],a[700005];
int main()
{
    n=read();for (i=1;i<=n;i++)a[i]=read();
    for (i=n;i;i--)
    {
        g[i]=f[mx];f[i]=a[i]+g[mx];
        if (f[i]>f[mx]) mx=i;else if (f[i]==f[mx]&&g[i]>g[mx]) mx=i;
    }
    printf("%lld %lld",f[mx],g[mx]);
    return 0;
}
OpenGL是一种强大的图形库,用于创建2D和3D图形,广泛应用于游戏开发、科学可视化、工程设计等领域。在这个项目中,我们看到一个基于OpenGL的机械臂运动仿真程序,它能够实现机械臂在四个方向上的旋转。这样的模拟对于理解机械臂的工作原理、机器人控制算法以及进行虚拟环境中的机械臂运动测试具有重要意义。 我们需要了解OpenGL的基础知识。OpenGL是一个跨语言、跨平台的编程接口,用于渲染2D和3D矢量图形。它提供了大量的函数来处理图形的绘制,包括几何形状的定义、颜色设置、光照处理、纹理映射等。开发者通过OpenGL库调用这些函数,构建出复杂的图形场景。 在这个机械臂仿真程序中,C#被用来作为编程语言。C#通常与Windows平台上的.NET Framework配合使用,提供了一种面向对象的、类型安全的语言,支持现代编程特性如LINQ、异步编程等。结合OpenGL,C#可以构建高性能的图形应用。 机械臂的运动仿真涉及到几个关键的计算和控制概念: 1. **关节角度**:机械臂的每个部分(或关节)都有一个或多个自由度,表示为关节角度。这些角度决定了机械臂各部分的位置和方向。 2. **正向运动学**:根据关节角度计算机械臂末端执行器(如抓手)在空间中的位置和方向。这涉及将各个关节的角度转换为欧拉角或四元数,然后转化为笛卡尔坐标系的X、Y、Z位置和旋转。 3. **反向运动学**:给定末端执行器的目标位置和方向,计算出各关节所需的理想角度。这是一个逆向问题,通常需要解决非线性方程组。 4. **运动规划**:确定从当前状态到目标状态的路径,确保机械臂在运动过程中避免碰撞和其他约束。 5. **OpenGL的使用**:在OpenGL中,我们首先创建几何模型来表示机械臂的各个部分。然后,使用矩阵变换(如旋转、平移和缩放)来更新关节角度对模型的影响。这些变换组合起来,形成机械臂的动态运动。 6. **四向旋转**:机械臂可能有四个独立的旋转轴,允许它在X、Y、Z三个轴上旋转,以及额外的绕自身轴线的旋转。每个轴的旋转都由对应的关节角度控制。 7. **交互控制**:用户可能可以通过输入设备(如鼠标或键盘)调整关节角度,实时观察机械臂的运动。这需要将用户输入转换为关节角度,并应用到运动学模型中。 8. **图形渲染**:OpenGL提供了多种渲染技术,如深度测试、光照模型、纹理映射等,可以用于提高机械臂模拟的真实感。例如,可以添加材质和纹理来模拟金属表面,或者使用光照来增强立体感。 这个项目结合了OpenGL的图形渲染能力与C#的编程灵活性,构建了一个可以直观展示机械臂运动的仿真环境。通过理解并实现这些关键概念,开发者不仅能够学习到图形编程技巧,还能深入理解机器人学的基本原理。
好的,这是一道经典的单调栈问题。题目描述如下: 有 $n$ 个湖,第 $i$ 个湖有一个高度 $h_i$。现在要在这些湖之间挖一些沟渠,使得相邻的湖之间的高度差不超过 $d$。请问最少需要挖多少个沟渠。 这是一道单调栈的典型应用题。我们可以从左到右遍历湖的高度,同时使用一个单调栈来维护之前所有湖的高度。具体来说,我们维护一个单调递增的栈,栈中存储的是湖的下标。假设当前遍历到第 $i$ 个湖,我们需要在之前的湖中找到一个高度最接近 $h_i$ 且高度不超过 $h_i-d$ 的湖,然后从这个湖到第 $i$ 个湖之间挖一条沟渠。具体的实现可以参考下面的代码: ```c++ #include <cstdio> #include <stack> using namespace std; const int N = 100010; int n, d; int h[N]; stack<int> stk; int main() { scanf("%d%d", &n, &d); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); int ans = 0; for (int i = 1; i <= n; i++) { while (!stk.empty() && h[stk.top()] <= h[i] - d) stk.pop(); if (!stk.empty()) ans++; stk.push(i); } printf("%d\n", ans); return 0; } ``` 这里的关键在于,当我们遍历到第 $i$ 个湖时,所有比 $h_i-d$ 小的湖都可以被舍弃,因为它们不可能成为第 $i$ 个湖的前驱。因此,我们可以不断地从栈顶弹出比 $h_i-d$ 小的湖,直到栈顶的湖高度大于 $h_i-d$,然后将 $i$ 入栈。这样,栈中存储的就是当前 $h_i$ 左边所有高度不超过 $h_i-d$ 的湖,栈顶元素就是最靠近 $h_i$ 且高度不超过 $h_i-d$ 的湖。如果栈不为空,说明找到了一个前驱湖,答案加一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值