手推BP算法系列2——Python实现多层神经元网络(Pyrtoch框架)

26 篇文章 1 订阅 ¥69.90 ¥99.00
79 篇文章 9 订阅
本文介绍了使用PyTorch框架实现多层神经网络的步骤,包括数据集处理、网络结构定义、损失函数选择(BCE比MSE更适合与sigmoid配合)及求导过程。通过`base/utils/functional.py`、`base/nn.py`、`MyData.py`、`MyNet.py`、`Trainer.py`等文件展示了具体实现,并指出`keepdims`参数的作用。提供完整代码的下载链接。
摘要由CSDN通过智能技术生成

数据集获取链接:
链接:猫和非猫的h5格式数据集
提取码:s4kp

将文件做成类似pytorch的框架
在这里插入图片描述
求导思路:

BCELOSS求导思路:(链式求导)
Linear1-->relu-->Linear2-->sigmoid-->Loss;
对Loss求导得dA2=(1-Y)/(1-A)-Y/A;
对sigmoid求导得dA2_dZ2 = A * (1 -A);
相乘得dZ2=dA2*dA2_dZ2;
要得到Linear2的dW2,dB2,需要知道rulu激活输出的A1,
A1用next()迭代出来,得到dW2,dB2;
要得到relu输出的A1的导数,需要知道Linear2的导数W2,
W2从动态图节点取,next()迭代一次获取一个层layer,当前W2=layer.weight
则得到dA1=dZ2*W2;
再求relu的导数relu_gradÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wa1tzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值