Pytorch项目打包和部署(4)——代码——TensorRT+Android

本文介绍了如何在Windows环境下下载和配置TensorRT,并通过样例项目进行验证。接着讲解了TensorRT在Android平台的部署,包括下载JDK、Android Studio,以及在Android设备上运行Pytorch的简单示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

首先下载TensorRT,进入官网NVIDIA TensorRT | NVIDIA Developer,点击download now,选择对应的TensorRT版本,windows下建议下 TensorRT7,点击同意,选择TensorRT 7.0(7.1是预览版本,不建议下载),选择对应的系统,此处windows下载要对应CUDA版本,一定要更新到对应的版本上去,否则运行会报错。

对于Tensor RT的使用,可以参考TensorRT的开发向导(第二个):在这里插入图片描述
下载后,解压到系统的一个位置,配置环境变量,系统变量的Path-编辑-新建-E:\TensorRT-7.0.0.11\lib,添加即可。

注意:Python只支持3.6,不支持3.7,想用的话需要下载源码进行编译,不过我们主要用C++,感兴趣的小伙伴可以自己尝试Python。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wa1tzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值