第一讲 函数极限与连续
01.函数的概念与特性
01.1 函数 y=f(x)y=f(x)y=f(x)
考察单值函数,使用铅直垂线法判断,若任何一个垂线与函数都只有一个交点,则该函数为单值函数(数形结合)。
考察求对应法则,例子: 2f(x)+x2f(1x)=A2f(x)+x^2f(\frac1x)=A2f(x)+x2f(x1)=A,取 x=1xx = \frac1xx=x1,有 2f(1x)+(1x)2f(x)=A2f(\frac1x)+(\frac1x)^2f(x)=A2f(x1)+(x1)2f(x)=A。
01.2 反函数
反函数存在的前提:原函数为双射函数,即一对一(铅直垂线法和水平垂线法联合判断)。
常见恒等代换: uv=evlnuu^v = e^{v\ln{u}}uv=evlnu
重要函数:
- y=ln(x+x2+1)y=\ln{(x+\sqrt{x^2+1})}y=ln(x+x2+1)叫做反双曲正弦函数,图像如下。
- 与之对应还有 y=ex−e−x2y=\frac{e^x-e^{-x}}{2}y=2ex−e−x叫做双曲正弦函数,图像如下。
- y=ex+e−x2y=\frac{e^x+e^{-x}}2y=2ex+e−x叫做双曲正弦函数,图像如下。
注:
- 当 x→0x\rightarrow0x→0时,ln(x+x2+1)\ln{(x+\sqrt{x^2+1})}ln(x+x2+1) ~ xxx。
- [ln(x+x2+1)]′=1x2+1\big[\ln{(x+\sqrt{x^2+1}})\big]^{\prime} = \frac1{\sqrt{x^2+1}}[ln(x+x2+1)]′=x2+11,$\int{\frac{1}{\sqrt{x^2+1}}}{\rm d}x =\ln{(x+\sqrt{x^2+1})} + C $。
01.3 复合函数
复合函数常与分段函数结合考察。
01.4 隐函数
形如F(x,y)=0F(x,y)=0F(x,y)=0的方程,如果保证了对于任意的 xxx,总有唯一的 yyy,则该方程确定了一个隐函数。
一般来说,直接带入 x0x_0x0 求解 y(x0)y(x_0)y(x0),若不易求,则使用观察法:
- 数形结合。
- 代入特殊值。
01.5 四种特性
01.5.1 有界性
设函数 f(x)f(x)f(x) 的定义域为 DDD,区间 I⊂DI \subset DI⊂D。若存在正数 MMM,使得对任意 x∈Ix \in Ix∈I,有 ∣f(x)∣≤M|f(x)| \leq M∣f(x)∣≤M,则称 f(x)f(x)f(x) 在 III 上有界;否则称无界。
注:
- 有界性必须针对具体区间,例如 f(x)=1/xf(x) = 1/xf(x)=1/x 在 [1,+∞)[1, +\infty)[1,+∞) 有界,但在 (0,1)(0, 1)(0,1) 无界。
- 不能混淆局部与整体,若 f(x)f(x)f(x) 在区间 III 的每一点邻域内有界,不能直接推出 f(x)f(x)f(x) 在 III 整体有界(需额外条件,如闭区间上连续)。
考研应用与题型扩展:
- 题型 1:直接证明有界性
方法:
- 利用基本不等式(如 ∣sinx∣≤1|\sin x| \leq 1∣sinx∣≤1);
- 对表达式放缩(如 ∣x/(1+x2)∣≤1/2|x/(1+x^2)| \leq 1/2∣x/(1+x2)∣≤1/2);
- 对递推数列 an+1=f(an)a_{n+1} = f(a_n)an+1=f(an),先证单调性再求极限确定界。
- 题型 2:结合连续性判断有界性
- 若 f(x)f(x)f(x) 在闭区间 [a,b][a, b][a,b] 上连续,则 f(x)f(x)f(x) 在 [a,b][a, b][a,b] 上有界(必考定理)。
- 反例:开区间 (a,b)(a, b)(a,b) 上连续的函数可能无界(如 f(x)=1/(x−a)f(x) = 1/(x-a)f(x)=1/(x−a)),因此如果是开区间,需要证明 a+,b−a_+,b_-a+,b−极限存在。
- 题型 3:利用导数或积分判断有界性
- 若 f(x)f(x)f(x) 在区间 III 上可导且导函数有界,则 f(x)f(x)f(x) 在 III 上满足 Lipschitz 条件(即 ∣f(x)−f(y)∣≤M∣x−y∣|f(x)-f(y)| \leq M|x-y|∣f(x)−f(y)∣≤M∣x−y∣),从而有界。
- 积分有界性:若 ∫ab∣g(x)∣dx\int_a^b |g(x)| dx∫ab∣g(x)∣dx 收敛,则 ∫axg(t)dt\int_a^x g(t) dt∫axg(t)dt 在 [a,b][a, b][a,b] 上有界。
01.5.2 单调性
定义法:设 f(x)f(x)f(x) 的定义域为 DDD,区间 I⊂DI \subset DI⊂D,有 x1,x2∈Ix_1,x_2\in Ix1,x2∈I,当 x1<x2x_1 < x_2x1<x2时,恒有 f(x1)<f(x2)f(x_1) < f(x_2)f(x1)<f(x2),则称 f(x)f(x)f(x) 在区间 III 上单调增加;当 x1<x2x_1 < x_2x1<x2时,恒有 f(x1)>f(x2)f(x_1) > f(x_2)f(x1)>f(x2),则称 f(x)f(x)f(x) 在区间 III 上单调减少。
**求导法:**设 f(x)f(x)f(x) 的定义域为 DDD,区间 I⊂DI \subset DI⊂D,有 x1,x2∈Ix_1,x_2\in Ix1,x2∈I:
- f(x)f(x)f(x) 是单调增函数 ⟺\Longleftrightarrow⟺ (x1−x2)[f(x1)−f(x2)]>0(x_1-x_2)[f(x_1)-f(x_2)] > 0(x1−x2)[f(x1)−f(x2)]>0;
- f(x)f(x)f(x) 是单调减函数 ⟺\Longleftrightarrow⟺ (x1−x2)[f(x1)−f(x2)]<0(x_1-x_2)[f(x_1)-f(x_2)] < 0(x1−x2)[f(x1)−f(x2)]<0;
- f(x)f(x)f(x) 是单调不减函数 ⟺\Longleftrightarrow⟺ (x1−x2)[f(x1)−f(x2)]≥0(x_1-x_2)[f(x_1)-f(x_2)] \geq 0(x1−x2)[f(x1)−f(x2)]≥0;
- f(x)f(x)f(x) 是单调不增函数 ⟺\Longleftrightarrow⟺ (x1−x2)[f(x1)−f(x2)]≤0(x_1-x_2)[f(x_1)-f(x_2)] \leq 0(x1−x2)[f(x1)−f(x2)]≤0。
01.5.3 奇偶性(最重要!)
前提:定义域 DDD 关于原点对称。
注:
- f(x)+f(−x)f(x) + f(-x)f(x)+f(−x)必是偶函数。如 y=ex+e−x2y=\frac{e^x+e^{-x}}2y=2ex+e−x;
- f(x)−f(−x)f(x)-f(-x)f(x)−f(−x)必是奇函数。如 ln1+x1−x=ln(1+x)−ln(1−x)\ln{\frac{1+x}{1-x}} = \ln{(1+x)}-\ln{(1-x)}ln1−x1+x=ln(1+x)−ln(1−x);
- f(x)=12[f(x)+f(−x)]+12[f(x)−f(−x)]=u(x)+v(x)f(x) = \frac12[f(x)+f(-x)]+\frac12[f(x)-f(-x)]=u(x)+v(x)f(x)=21[f(x)+f(−x)]+21[f(x)−f(−x)]=u(x)+v(x),可知任何一个函数都可以写成一个奇函数和偶函数的和的形式。(**重要结论!!**可以应用在积分简化、分析对称性,求解微分方程等)。
- 复合函数奇偶性 f(g(x))f(g(x))f(g(x)),内偶则偶,内奇同外。
- 求导一次,奇偶性互换。
- f(x)奇⇒∫0xf(t)dt偶f(x)奇 \Rightarrow \int_0^xf(t){\rm d}t 偶f(x)奇⇒∫0xf(t)dt偶。
- 设对任意的 x,yx,yx,y,都有 f(x+y)=f(x)+f(y)f(x+y) = f(x)+f(y)f(x+y)=f(x)+f(y),则 f(x)f(x)f(x)是奇函数。
01.5.4 周期性
若存在正数 TTT,使得对任意 x∈Dx \in Dx∈D(定义域),有:
- x+T∈Dx + T \in Dx+T∈D;
- f(x+T)=f(x)f(x + T) = f(x)f(x+T)=f(x),
则称 f(x)f(x)f(x) 为周期函数,TTT 称为它的一个周期。
最小正周期:若存在最小的正数 T0T_0T0 满足上述条件,则称 T0T_0T0 为基本周期。
注:
- 若 f(x)f(x)f(x) 以 TTT 为周期,则 f(ax+b)f(ax+b)f(ax+b) 以 T∣a∣\frac{T}{\vert a\vert}∣a∣T为周期。
- 若 g(x)g(x)g(x) 为周期函数,则 f(g(x))f(g(x))f(g(x))也是周期函数。
- 若 f(x)f(x)f(x) 以 TTT为周期且可导,则 f′(x)f^{\prime}(x)f′(x) 也是以 TTT 为周期。
02.函数
02.1 基本初等函数
重要技巧:
- 在研究最值中, ∣x∣=x2\vert x\vert = \sqrt{x^2}∣x∣=x2,x2x^2x2 的最值点与 ∣x∣=x2\vert x\vert = \sqrt{x^2}∣x∣=x2相同,u1u2u3u_1u_2u_3u1u2u3 可用 ln(u1u2u3)=lnu1+lnu2+lnu3\ln(u_1u_2u_3)=\ln{u_1}+\ln{u_2}+\ln{u_3}ln(u1u2u3)=lnu1+lnu2+lnu3 研究最值点;
- 0=ln10=\ln10=ln1,1=lne=e0=sin2x+cos2x=1xx=⋯1=\ln{e}=e^0=sin^2x+cos^2x=\frac1xx=\cdots1=lne=e0=sin2x+cos2x=x1x=⋯,题目中常见包装;
- uv=evlnuu^v = e^{v\ln{u}}uv=evlnu;
- x→0+,sinx<xx\rightarrow 0^+,sinx < xx→0+,sinx<x;
- 1+tan2x=sec2;1+cot2x=csc2x1+tan^2x=sec^2;1+cot^2x=csc^2x1+tan2x=sec2;1+cot2x=csc2x;
- arctanx+arccot x=π2\arctan{x}+arccot{\ x}=\frac{\pi}2arctanx+arccot x=2π。
02.2 分段函数
重要技巧:
- x−1<[x]≤xx-1<[x]\leq xx−1<[x]≤x;
- limx→0+[x]=0;limx→0−[x]=−1\lim_{x\rightarrow{0^+}}[x]=0;\lim_{x\rightarrow{0^-}}[x]=-1limx→0+[x]=0;limx→0−[x]=−1。
03.函数极限的概念与性质
03.1 函数极限的定义
limx→x0f(x)⟺∀ε>0,∃δ>0,当 0<∣x−x0∣<δ,有 ∣f(x)−A∣<δ\lim_{x\rightarrow x_0}{f(x)} \Longleftrightarrow \forall \varepsilon >0,\exist \delta > 0,当\ 0<\vert x-x_0\vert<\delta,有\ \vert f(x)-A\vert < \deltalimx→x0f(x)⟺∀ε>0,∃δ>0,当 0<∣x−x0∣<δ,有 ∣f(x)−A∣<δ。
文字语言:任给 ε>0\varepsilon > 0ε>0,总能找到 δ\deltaδ 的去心邻域,使得我们的距离小于你这个尺度。
03.2 函数极限的性质
03.2.1 唯一性
求极限时,注意自变量取值的”双向性“,例如:limx→∞ex\lim_{x\rightarrow \infty}{e^x}limx→∞ex 极限不存在。
需要注意的函数有:指数函数、带绝对值的函数、分段函数…
03.2.2 局部有界性
如果 limx→x0f(x)=A\lim_{x\rightarrow x_0}{f(x)} = Alimx→x0f(x)=A,则存在正常数 MMM 和 δ\deltaδ,使得当 0<∣x−x0∣<δ\ 0<\vert x-x_0\vert<\delta 0<∣x−x0∣<δ,有 ∣f(x)∣≤M\vert f(x)\vert \leq M∣f(x)∣≤M。
证明(经典证明往往有经典技巧):
∣f(x)∣=∣f(x)−A+A∣≤∣f(x)−A∣+∣A∣|f(x)|=|f(x)-A+A|\leq|f(x)-A|+|A|∣f(x)∣=∣f(x)−A+A∣≤∣f(x)−A∣+∣A∣(技巧1,恒等变换);
取 ε=1,∣f(x)∣≤1+∣A∣=M\varepsilon = 1,|f(x)|\leq1+|A|=Mε=1,∣f(x)∣≤1+∣A∣=M(技巧2,放缩);
注:
- 极限存在是函数局部有界的充分条件,不是必要条件,例如:limx→∞sinx\lim_{x\rightarrow \infty}{\sin{x}}limx→∞sinx;
- 若在闭区间 [a,b][a,b][a,b] 上为连续函数,则 f(x)f(x)f(x) 在 [a,b][a,b][a,b] 一定有界;
- 若在开区间 (a,b)(a,b)(a,b) 上为连续函数,且 limx→a+f(x)与limx→b−f(x)\lim_{x\rightarrow a^+}{f(x)}与\lim_{x\rightarrow b^-}{f(x)}limx→a+f(x)与limx→b−f(x)存在,则 f(x)f(x)f(x) 在 (a,b)(a,b)(a,b) 一定有界;
- 有界函数与有界函数的和、差、积仍为有界函数。
03.2.3 局部保号性
如果 limx→x0f(x)\lim_{x\rightarrow x_0}{f(x)}limx→x0f(x),且 A>0(或A<0)A>0(或A<0)A>0(或A<0),那么存在去心邻域,有 f(x)>0或(f(x)<0)f(x)>0或(f(x)<0)f(x)>0或(f(x)<0),如果在去心邻域中,f(x)≥0或(f(x)≤0)f(x)\geq0或(f(x)\leq0)f(x)≥0或(f(x)≤0),且 limx→x0f(x)=A\lim_{x\rightarrow x_0}{f(x)}=Alimx→x0f(x)=A,则 A≥0(或A≤0)A\geq0(或A\leq0)A≥0(或A≤0)。
证明(经典证明往往有经典技巧):
- limx→x0f(x)(A>0),∀ε>0,∃δ>0,当 0<∣x−x0∣<δ,有 ∣f(x)−A∣<δ,取ε=A2>0,有∣f(x)−A∣<A2,所以f(x)>A2>0\lim_{x\rightarrow x_0}{f(x)}(A>0),\forall \varepsilon >0,\exist \delta > 0,当\ 0<\vert x-x_0\vert<\delta,有\ \vert f(x)-A\vert < \delta,取\varepsilon = \frac{A}2>0,有|f(x)-A|<\frac{A}2,所以f(x)>\frac{A}2>0limx→x0f(x)(A>0),∀ε>0,∃δ>0,当 0<∣x−x0∣<δ,有 ∣f(x)−A∣<δ,取ε=2A>0,有∣f(x)−A∣<2A,所以f(x)>2A>0;
- 当在 x0x_0x0 的去心邻域内 f(x)≥0f(x) \geq 0f(x)≥0 时,假设 limx→x0f(x)=A\lim_{x \to x_0} f(x) = Alimx→x0f(x)=A ,需证 A≥0A \geq 0A≥0 。 假设 A<0A < 0A<0 ,取 ε=−A2>0\varepsilon = -\frac{A}{2} > 0ε=−2A>0 ,根据极限定义,存在 δ>0\delta > 0δ>0 ,当 0<∣x−x0∣<δ0 < \vert x - x_0 \vert < \delta0<∣x−x0∣<δ 时,∣f(x)−A∣<ε\vert f(x) - A \vert < \varepsilon∣f(x)−A∣<ε 。有$f(x) < A + \varepsilon = A - \frac{A}{2} = \frac{A}{2} < 0 $这与 f(x)≥0f(x) \geq 0f(x)≥0 矛盾,故 A≥0A \geq 0A≥0 。 (反证法)
03.3 无穷小的定义
如果函数 f(x)f(x)f(x) 当 x→x0x \to x_0x→x0(或 x→∞x \to \inftyx→∞)时的极限为零,那么称函数 f(x)f(x)f(x) 为当 x→x0x \to x_0x→x0(或 x→∞x \to \inftyx→∞)时的无穷小。 用数学语言表述为:
- limx→x0f(x)=0\lim_{x \to x_0} f(x) = 0limx→x0f(x)=0 ,则称 f(x)f(x)f(x) 是当 x→x0x \to x_0x→x0 时的无穷小。
- limx→∞f(x)=0\lim_{x \to \infty} f(x) = 0limx→∞f(x)=0 ,则称 f(x)f(x)f(x) 是当 x→∞x \to \inftyx→∞ 时的无穷小。
注:
- (脱帽法)limx→⋅f(x)⟺A+α,limx→⋅α=0\lim_{x \to \cdot} f(x) \Longleftrightarrow A + \alpha,\lim_{x \to \cdot} \alpha=0limx→⋅f(x)⟺A+α,limx→⋅α=0,即 α\alphaα 是 x→⋅x\to\cdotx→⋅ 时的无穷小。
03.4 无穷小的性质
- 有限个无穷小的和仍是无穷小。
- 有限个无穷小的乘积仍是无穷小。
- 有界函数与无穷小的乘积是无穷小。
均可用夹逼定理证明。
03.5 无穷小的比阶
设 α(x)\alpha(x)α(x) 和 β(x)\beta(x)β(x) 都是在同一个自变量变化过程中的无穷小。
- 如果 limx→⋅α(x)β(x)=0\lim_{x \to \cdot} \frac{\alpha(x)}{\beta(x)} = 0limx→⋅β(x)α(x)=0,则称 α(x)\alpha(x)α(x) 是比 β(x)\beta(x)β(x) 高阶的无穷小,记作 α(x)=o(β(x))\alpha(x) = o(\beta(x))α(x)=o(β(x)) 。
- 如果 limx→⋅α(x)β(x)=∞\lim_{x \to \cdot} \frac{\alpha(x)}{\beta(x)} = \inftylimx→⋅β(x)α(x)=∞,则称 α(x)\alpha(x)α(x) 是比 β(x)\beta(x)β(x) 低阶的无穷小。
- 如果 limx→⋅α(x)β(x)=C≠0\lim_{x \to \cdot} \frac{\alpha(x)}{\beta(x)} = C \neq 0limx→⋅β(x)α(x)=C=0,则称 α(x)\alpha(x)α(x) 与 β(x)\beta(x)β(x) 是同阶无穷小。
- 如果 limx→⋅α(x)β(x)=1\lim_{x \to \cdot} \frac{\alpha(x)}{\beta(x)} = 1limx→⋅β(x)α(x)=1,则称 α(x)\alpha(x)α(x) 与 β(x)\beta(x)β(x) 是等价无穷小,记作 α(x)∼β(x)\alpha(x) \sim \beta(x)α(x)∼β(x) 。
03.6 常用无穷小
当 x→0x \to 0x→0:
sinx\sin{x}sinx ~ tanx\tan{x}tanx ~ arcsinx\arcsin{x}arcsinx ~ arctanx\arctan{x}arctanx ~ ex−1e^x-1ex−1~ ln(1+x)\ln{(1+x)}ln(1+x) ~ ax−1lna\frac{a^x-1}{\ln{a}}lnaax−1 ~ (1+x)a−1a\frac{(1+x)^a-1}{a}a(1+x)a−1
注:
- 使用的时候注意广义化,当 f(x)→0f(x) \to 0f(x)→0,上述等价无穷小中的 xxx 可以用 f(x)f(x)f(x) 代替。
- 上述均可使用泰勒展开和洛必达法则证明。
- 等价无穷小替换规则需要遵守恒等代换。
04. 计算
04.1 方法
04.1.1 极限的四则运算规则
当 f(x)f(x)f(x) 与 g(x)g(x)g(x) 的极限存在时,函数的加减乘除分别等于极限的加减乘除(除要求分母极限不为零)。
重要结论:
- 若limx→x0f(x)⋅g(x)\lim_{x\rightarrow x_0}{f(x)\cdot g(x)}limx→x0f(x)⋅g(x)极限存在,limx→x0f(x)\lim_{x\rightarrow x_0}{f(x)}limx→x0f(x)极限存在且不为无穷小量,那么limx→x0g(x)\lim_{x\rightarrow x_0}{g(x)}limx→x0g(x)极限必定存在!(用于化简多项式)
扩展(可以在有关定参数题目中直接使用):
- 若 limf(x)g(x)=A\lim{\frac{f(x)}{g(x)}}=Alimg(x)f(x)=A,且 limg(x)=0\lim{g(x)}=0limg(x)=0,则 limf(x)=0\lim{f(x)}=0limf(x)=0;
- 若 limf(x)g(x)=A(A≠0)\lim{\frac{f(x)}{g(x)}}=A(A\neq0)limg(x)f(x)=A(A=0),且 limf(x)=0\lim{f(x)}=0limf(x)=0,则 limf(x)=0\lim{f(x)}=0limf(x)=0。
04.1.2 洛必达法则
法则一: 00\frac0000 型
- 当 x→⋅x\rightarrow \cdotx→⋅ 时,函数 f(x)f(x)f(x) 和 F(x)F(x)F(x) 都趋于零;
- f′(x)f^{\prime}(x)f′(x) 及 F′(x)F^{\prime}(x)F′(x) 在点 aaa 的某去心邻域内(或当 ∣x∣>X|x|>X∣x∣>X,此时 XXX 为充分大的正数)存在,且 F′(x)≠0F^{\prime}(x)\neq0F′(x)=0;
- limx→⋅f(x)′g(x)′\lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}}limx→⋅g(x)′f(x)′ 存在或为无穷大,则 limx→⋅f(x)g(x)=limx→⋅f(x)′g(x)′\lim_{x\to \cdot}{\frac{f(x)}{g(x)}}=\lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}}limx→⋅g(x)f(x)=limx→⋅g(x)′f(x)′。
法则二: ∞∞\frac{\infty}{\infty}∞∞ 型
- 当 x→⋅x\rightarrow \cdotx→⋅ 时,函数 f(x)f(x)f(x) 和 F(x)F(x)F(x) 都趋于无穷大;
- f′(x)f^{\prime}(x)f′(x) 及 F′(x)F^{\prime}(x)F′(x) 在点 aaa 的某去心邻域内(或当 ∣x∣>X|x|>X∣x∣>X,此时 XXX 为充分大的正数)存在,且 F′(x)≠0F^{\prime}(x)\neq0F′(x)=0;
- limx→⋅f(x)′g(x)′\lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}}limx→⋅g(x)′f(x)′ 存在或为无穷大,则 limx→⋅f(x)g(x)=limx→⋅f(x)′g(x)′\lim_{x\to \cdot}{\frac{f(x)}{g(x)}}=\lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}}limx→⋅g(x)f(x)=limx→⋅g(x)′f(x)′。
注:
- ?∞\frac{?}{\infty}∞? 型也可以使用洛必达法则;
- 洛必达法则可以在满足条件下多次连续使用;
- limx→⋅f(x)g(x)=limx→⋅f(x)′g(x)′\lim_{x\to \cdot}{\frac{f(x)}{g(x)}}=\lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}}limx→⋅g(x)f(x)=limx→⋅g(x)′f(x)′ 中,右存在,则左存在,左存在,则右不一定存在。
04.1.3 泰勒公式
设 f(x)f(x)f(x) 在点 x=0x=0x=0 处 nnn 阶可导,则存在 x=0x=0x=0 的一个邻域,对于该邻域内的任一点 xxx,有 f(x)=f(0)+f′(0)x+f′′(0)2!x2+⋯+fn(0)n!xn+ο(xn)f(x)=f(0)+f^{\prime}(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\cdots+\frac{f^{n}(0)}{n!}x^n+\omicron(x^n)f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!fn(0)xn+ο(xn)。
注:
- limx→aRn(x)(x−a)n=0\lim_{x \to a} \frac{R_n(x)}{(x - a)^n} = 0limx→a(x−a)nRn(x)=0;
04.1.4 无穷小的运算
-
ο(xm)±ο(xn)=ο(xl),l=min(m,n)\omicron(x^m)\pm\omicron(x^n)=\omicron(x^l),l=\min(m,n)ο(xm)±ο(xn)=ο(xl),l=min(m,n)(加减法时低阶吸收高阶);
-
ο(xm)⋅ο(xn)=ο(xn+m),xm⋅ο(xn)=ο(xn+m)\omicron(x^m)\cdot\omicron(x^n)=\omicron(x^{n+m}),x^m\cdot\omicron(x^n)=\omicron(x^{n+m})ο(xm)⋅ο(xn)=ο(xn+m),xm⋅ο(xn)=ο(xn+m)(乘法时阶数“累加”);
-
ο(xm)=ο(k⋅xm)=k⋅ο(xm)\omicron(x^m)=\omicron(k\cdot x^m)=k\cdot \omicron(x^m)ο(xm)=ο(k⋅xm)=k⋅ο(xm)(非零常数相乘不影响阶数);
-
ο(xm)±ο(xn)=ο(xl),l=min(m,n)\omicron(x^m)\pm\omicron(x^n)=\omicron(x^l),l=\min(m,n)ο(xm)±ο(xn)=ο(xl),l=min(m,n)(加减法时低阶吸收高阶);
-
ο(xm)⋅ο(xn)=ο(xn+m),xm⋅ο(xn)=ο(xn+m)\omicron(x^m)\cdot\omicron(x^n)=\omicron(x^{n+m}),x^m\cdot\omicron(x^n)=\omicron(x^{n+m})ο(xm)⋅ο(xn)=ο(xn+m),xm⋅ο(xn)=ο(xn+m)(乘法时阶数“累加”);
-
ο(xm)=ο(k⋅xm)=k⋅ο(xm)\omicron(x^m)=\omicron(k\cdot x^m)=k\cdot \omicron(x^m)ο(xm)=ο(k⋅xm)=k⋅ο(xm)(非零常数相乘不影响阶数);