第一讲 函数极限与连续
01.函数的概念与特性
01.1 函数 y = f ( x ) y=f(x) y=f(x)
考察单值函数,使用铅直垂线法判断,若任何一个垂线与函数都只有一个交点,则该函数为单值函数(数形结合)。
考察求对应法则,例子: 2 f ( x ) + x 2 f ( 1 x ) = A 2f(x)+x^2f(\frac1x)=A 2f(x)+x2f(x1)=A,取 x = 1 x x = \frac1x x=x1,有 2 f ( 1 x ) + ( 1 x ) 2 f ( x ) = A 2f(\frac1x)+(\frac1x)^2f(x)=A 2f(x1)+(x1)2f(x)=A。
01.2 反函数
反函数存在的前提:原函数为双射函数,即一对一(铅直垂线法和水平垂线法联合判断)。
常见恒等代换: u v = e v ln u u^v = e^{v\ln{u}} uv=evlnu
重要函数:
-
y
=
ln
(
x
+
x
2
+
1
)
y=\ln{(x+\sqrt{x^2+1})}
y=ln(x+x2+1)叫做反双曲正弦函数,图像如下。
- 与之对应还有
y
=
e
x
−
e
−
x
2
y=\frac{e^x-e^{-x}}{2}
y=2ex−e−x叫做双曲正弦函数,图像如下。
-
y
=
e
x
+
e
−
x
2
y=\frac{e^x+e^{-x}}2
y=2ex+e−x叫做双曲正弦函数,图像如下。
注:
- 当 x → 0 x\rightarrow0 x→0时, ln ( x + x 2 + 1 ) \ln{(x+\sqrt{x^2+1})} ln(x+x2+1) ~ x x x。
- [ ln ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 \big[\ln{(x+\sqrt{x^2+1}})\big]^{\prime} = \frac1{\sqrt{x^2+1}} [ln(x+x2+1)]′=x2+11,$\int{\frac{1}{\sqrt{x^2+1}}}{\rm d}x =\ln{(x+\sqrt{x^2+1})} + C $。
01.3 复合函数
复合函数常与分段函数结合考察。
01.4 隐函数
形如 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0的方程,如果保证了对于任意的 x x x,总有唯一的 y y y,则该方程确定了一个隐函数。
一般来说,直接带入 x 0 x_0 x0 求解 y ( x 0 ) y(x_0) y(x0),若不易求,则使用观察法:
- 数形结合。
- 代入特殊值。
01.5 四种特性
01.5.1 有界性
设函数 f ( x ) f(x) f(x) 的定义域为 D D D,区间 I ⊂ D I \subset D I⊂D。若存在正数 M M M,使得对任意 x ∈ I x \in I x∈I,有 ∣ f ( x ) ∣ ≤ M |f(x)| \leq M ∣f(x)∣≤M,则称 f ( x ) f(x) f(x) 在 I I I 上有界;否则称无界。
注:
- 有界性必须针对具体区间,例如 f ( x ) = 1 / x f(x) = 1/x f(x)=1/x 在 [ 1 , + ∞ ) [1, +\infty) [1,+∞) 有界,但在 ( 0 , 1 ) (0, 1) (0,1) 无界。
- 不能混淆局部与整体,若 f ( x ) f(x) f(x) 在区间 I I I 的每一点邻域内有界,不能直接推出 f ( x ) f(x) f(x) 在 I I I 整体有界(需额外条件,如闭区间上连续)。
考研应用与题型扩展:
- 题型 1:直接证明有界性
方法:
- 利用基本不等式(如 ∣ sin x ∣ ≤ 1 |\sin x| \leq 1 ∣sinx∣≤1);
- 对表达式放缩(如 ∣ x / ( 1 + x 2 ) ∣ ≤ 1 / 2 |x/(1+x^2)| \leq 1/2 ∣x/(1+x2)∣≤1/2);
- 对递推数列 a n + 1 = f ( a n ) a_{n+1} = f(a_n) an+1=f(an),先证单调性再求极限确定界。
- 题型 2:结合连续性判断有界性
- 若 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a, b] [a,b] 上连续,则 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上有界(必考定理)。
- 反例:开区间 ( a , b ) (a, b) (a,b) 上连续的函数可能无界(如 f ( x ) = 1 / ( x − a ) f(x) = 1/(x-a) f(x)=1/(x−a)),因此如果是开区间,需要证明 a + , b − a_+,b_- a+,b−极限存在。
- 题型 3:利用导数或积分判断有界性
- 若 f ( x ) f(x) f(x) 在区间 I I I 上可导且导函数有界,则 f ( x ) f(x) f(x) 在 I I I 上满足 Lipschitz 条件(即 ∣ f ( x ) − f ( y ) ∣ ≤ M ∣ x − y ∣ |f(x)-f(y)| \leq M|x-y| ∣f(x)−f(y)∣≤M∣x−y∣),从而有界。
- 积分有界性:若 ∫ a b ∣ g ( x ) ∣ d x \int_a^b |g(x)| dx ∫ab∣g(x)∣dx 收敛,则 ∫ a x g ( t ) d t \int_a^x g(t) dt ∫axg(t)dt 在 [ a , b ] [a, b] [a,b] 上有界。
01.5.2 单调性
定义法:设 f ( x ) f(x) f(x) 的定义域为 D D D,区间 I ⊂ D I \subset D I⊂D,有 x 1 , x 2 ∈ I x_1,x_2\in I x1,x2∈I,当 x 1 < x 2 x_1 < x_2 x1<x2时,恒有 f ( x 1 ) < f ( x 2 ) f(x_1) < f(x_2) f(x1)<f(x2),则称 f ( x ) f(x) f(x) 在区间 I I I 上单调增加;当 x 1 < x 2 x_1 < x_2 x1<x2时,恒有 f ( x 1 ) > f ( x 2 ) f(x_1) > f(x_2) f(x1)>f(x2),则称 f ( x ) f(x) f(x) 在区间 I I I 上单调减少。
**求导法:**设 f ( x ) f(x) f(x) 的定义域为 D D D,区间 I ⊂ D I \subset D I⊂D,有 x 1 , x 2 ∈ I x_1,x_2\in I x1,x2∈I:
- f ( x ) f(x) f(x) 是单调增函数 ⟺ \Longleftrightarrow ⟺ ( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] > 0 (x_1-x_2)[f(x_1)-f(x_2)] > 0 (x1−x2)[f(x1)−f(x2)]>0;
- f ( x ) f(x) f(x) 是单调减函数 ⟺ \Longleftrightarrow ⟺ ( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] < 0 (x_1-x_2)[f(x_1)-f(x_2)] < 0 (x1−x2)[f(x1)−f(x2)]<0;
- f ( x ) f(x) f(x) 是单调不减函数 ⟺ \Longleftrightarrow ⟺ ( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] ≥ 0 (x_1-x_2)[f(x_1)-f(x_2)] \geq 0 (x1−x2)[f(x1)−f(x2)]≥0;
- f ( x ) f(x) f(x) 是单调不增函数 ⟺ \Longleftrightarrow ⟺ ( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] ≤ 0 (x_1-x_2)[f(x_1)-f(x_2)] \leq 0 (x1−x2)[f(x1)−f(x2)]≤0。
01.5.3 奇偶性(最重要!)
前提:定义域 D D D 关于原点对称。
注:
- f ( x ) + f ( − x ) f(x) + f(-x) f(x)+f(−x)必是偶函数。如 y = e x + e − x 2 y=\frac{e^x+e^{-x}}2 y=2ex+e−x;
- f ( x ) − f ( − x ) f(x)-f(-x) f(x)−f(−x)必是奇函数。如 ln 1 + x 1 − x = ln ( 1 + x ) − ln ( 1 − x ) \ln{\frac{1+x}{1-x}} = \ln{(1+x)}-\ln{(1-x)} ln1−x1+x=ln(1+x)−ln(1−x);
- f ( x ) = 1 2 [ f ( x ) + f ( − x ) ] + 1 2 [ f ( x ) − f ( − x ) ] = u ( x ) + v ( x ) f(x) = \frac12[f(x)+f(-x)]+\frac12[f(x)-f(-x)]=u(x)+v(x) f(x)=21[f(x)+f(−x)]+21[f(x)−f(−x)]=u(x)+v(x),可知任何一个函数都可以写成一个奇函数和偶函数的和的形式。(**重要结论!!**可以应用在积分简化、分析对称性,求解微分方程等)。
- 复合函数奇偶性 f ( g ( x ) ) f(g(x)) f(g(x)),内偶则偶,内奇同外。
- 求导一次,奇偶性互换。
- f ( x ) 奇 ⇒ ∫ 0 x f ( t ) d t 偶 f(x)奇 \Rightarrow \int_0^xf(t){\rm d}t 偶 f(x)奇⇒∫0xf(t)dt偶。
- 设对任意的 x , y x,y x,y,都有 f ( x + y ) = f ( x ) + f ( y ) f(x+y) = f(x)+f(y) f(x+y)=f(x)+f(y),则 f ( x ) f(x) f(x)是奇函数。
01.5.4 周期性
若存在正数 T T T,使得对任意 x ∈ D x \in D x∈D(定义域),有:
- x + T ∈ D x + T \in D x+T∈D;
- f ( x + T ) = f ( x ) f(x + T) = f(x) f(x+T)=f(x),
则称
f
(
x
)
f(x)
f(x) 为周期函数,
T
T
T 称为它的一个周期。
最小正周期:若存在最小的正数
T
0
T_0
T0 满足上述条件,则称
T
0
T_0
T0 为基本周期。
注:
- 若 f ( x ) f(x) f(x) 以 T T T 为周期,则 f ( a x + b ) f(ax+b) f(ax+b) 以 T ∣ a ∣ \frac{T}{\vert a\vert} ∣a∣T为周期。
- 若 g ( x ) g(x) g(x) 为周期函数,则 f ( g ( x ) ) f(g(x)) f(g(x))也是周期函数。
- 若 f ( x ) f(x) f(x) 以 T T T为周期且可导,则 f ′ ( x ) f^{\prime}(x) f′(x) 也是以 T T T 为周期。
02.函数
02.1 基本初等函数
重要技巧:
- 在研究最值中, ∣ x ∣ = x 2 \vert x\vert = \sqrt{x^2} ∣x∣=x2, x 2 x^2 x2 的最值点与 ∣ x ∣ = x 2 \vert x\vert = \sqrt{x^2} ∣x∣=x2相同, u 1 u 2 u 3 u_1u_2u_3 u1u2u3 可用 ln ( u 1 u 2 u 3 ) = ln u 1 + ln u 2 + ln u 3 \ln(u_1u_2u_3)=\ln{u_1}+\ln{u_2}+\ln{u_3} ln(u1u2u3)=lnu1+lnu2+lnu3 研究最值点;
- 0 = ln 1 0=\ln1 0=ln1, 1 = ln e = e 0 = s i n 2 x + c o s 2 x = 1 x x = ⋯ 1=\ln{e}=e^0=sin^2x+cos^2x=\frac1xx=\cdots 1=lne=e0=sin2x+cos2x=x1x=⋯,题目中常见包装;
- u v = e v ln u u^v = e^{v\ln{u}} uv=evlnu;
- x → 0 + , s i n x < x x\rightarrow 0^+,sinx < x x→0+,sinx<x;
- 1 + t a n 2 x = s e c 2 ; 1 + c o t 2 x = c s c 2 x 1+tan^2x=sec^2;1+cot^2x=csc^2x 1+tan2x=sec2;1+cot2x=csc2x;
- arctan x + a r c c o t x = π 2 \arctan{x}+arccot{\ x}=\frac{\pi}2 arctanx+arccot x=2π。
02.2 分段函数
重要技巧:
- x − 1 < [ x ] ≤ x x-1<[x]\leq x x−1<[x]≤x;
- lim x → 0 + [ x ] = 0 ; lim x → 0 − [ x ] = − 1 \lim_{x\rightarrow{0^+}}[x]=0;\lim_{x\rightarrow{0^-}}[x]=-1 limx→0+[x]=0;limx→0−[x]=−1。
03.函数极限的概念与性质
03.1 函数极限的定义
lim x → x 0 f ( x ) ⟺ ∀ ε > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A ∣ < δ \lim_{x\rightarrow x_0}{f(x)} \Longleftrightarrow \forall \varepsilon >0,\exist \delta > 0,当\ 0<\vert x-x_0\vert<\delta,有\ \vert f(x)-A\vert < \delta limx→x0f(x)⟺∀ε>0,∃δ>0,当 0<∣x−x0∣<δ,有 ∣f(x)−A∣<δ。
文字语言:任给 ε > 0 \varepsilon > 0 ε>0,总能找到 δ \delta δ 的去心邻域,使得我们的距离小于你这个尺度。
03.2 函数极限的性质
03.2.1 唯一性
求极限时,注意自变量取值的”双向性“,例如: lim x → ∞ e x \lim_{x\rightarrow \infty}{e^x} limx→∞ex 极限不存在。
需要注意的函数有:指数函数、带绝对值的函数、分段函数…
03.2.2 局部有界性
如果 lim x → x 0 f ( x ) = A \lim_{x\rightarrow x_0}{f(x)} = A limx→x0f(x)=A,则存在正常数 M M M 和 δ \delta δ,使得当 0 < ∣ x − x 0 ∣ < δ \ 0<\vert x-x_0\vert<\delta 0<∣x−x0∣<δ,有 ∣ f ( x ) ∣ ≤ M \vert f(x)\vert \leq M ∣f(x)∣≤M。
证明(经典证明往往有经典技巧):
∣ f ( x ) ∣ = ∣ f ( x ) − A + A ∣ ≤ ∣ f ( x ) − A ∣ + ∣ A ∣ |f(x)|=|f(x)-A+A|\leq|f(x)-A|+|A| ∣f(x)∣=∣f(x)−A+A∣≤∣f(x)−A∣+∣A∣(技巧1,恒等变换);
取 ε = 1 , ∣ f ( x ) ∣ ≤ 1 + ∣ A ∣ = M \varepsilon = 1,|f(x)|\leq1+|A|=M ε=1,∣f(x)∣≤1+∣A∣=M(技巧2,放缩);
注:
- 极限存在是函数局部有界的充分条件,不是必要条件,例如: lim x → ∞ sin x \lim_{x\rightarrow \infty}{\sin{x}} limx→∞sinx;
- 若在闭区间 [ a , b ] [a,b] [a,b] 上为连续函数,则 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 一定有界;
- 若在开区间 ( a , b ) (a,b) (a,b) 上为连续函数,且 lim x → a + f ( x ) 与 lim x → b − f ( x ) \lim_{x\rightarrow a^+}{f(x)}与\lim_{x\rightarrow b^-}{f(x)} limx→a+f(x)与limx→b−f(x)存在,则 f ( x ) f(x) f(x) 在 ( a , b ) (a,b) (a,b) 一定有界;
- 有界函数与有界函数的和、差、积仍为有界函数。
03.2.3 局部保号性
如果 lim x → x 0 f ( x ) \lim_{x\rightarrow x_0}{f(x)} limx→x0f(x),且 A > 0 ( 或 A < 0 ) A>0(或A<0) A>0(或A<0),那么存在去心邻域,有 f ( x ) > 0 或 ( f ( x ) < 0 ) f(x)>0或(f(x)<0) f(x)>0或(f(x)<0),如果在去心邻域中, f ( x ) ≥ 0 或 ( f ( x ) ≤ 0 ) f(x)\geq0或(f(x)\leq0) f(x)≥0或(f(x)≤0),且 lim x → x 0 f ( x ) = A \lim_{x\rightarrow x_0}{f(x)}=A limx→x0f(x)=A,则 A ≥ 0 ( 或 A ≤ 0 ) A\geq0(或A\leq0) A≥0(或A≤0)。
证明(经典证明往往有经典技巧):
- lim x → x 0 f ( x ) ( A > 0 ) , ∀ ε > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A ∣ < δ ,取 ε = A 2 > 0 , 有 ∣ f ( x ) − A ∣ < A 2 , 所以 f ( x ) > A 2 > 0 \lim_{x\rightarrow x_0}{f(x)}(A>0),\forall \varepsilon >0,\exist \delta > 0,当\ 0<\vert x-x_0\vert<\delta,有\ \vert f(x)-A\vert < \delta,取\varepsilon = \frac{A}2>0,有|f(x)-A|<\frac{A}2,所以f(x)>\frac{A}2>0 limx→x0f(x)(A>0),∀ε>0,∃δ>0,当 0<∣x−x0∣<δ,有 ∣f(x)−A∣<δ,取ε=2A>0,有∣f(x)−A∣<2A,所以f(x)>2A>0;
- 当在 x 0 x_0 x0 的去心邻域内 f ( x ) ≥ 0 f(x) \geq 0 f(x)≥0 时,假设 lim x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limx→x0f(x)=A ,需证 A ≥ 0 A \geq 0 A≥0 。 假设 A < 0 A < 0 A<0 ,取 ε = − A 2 > 0 \varepsilon = -\frac{A}{2} > 0 ε=−2A>0 ,根据极限定义,存在 δ > 0 \delta > 0 δ>0 ,当 0 < ∣ x − x 0 ∣ < δ 0 < \vert x - x_0 \vert < \delta 0<∣x−x0∣<δ 时, ∣ f ( x ) − A ∣ < ε \vert f(x) - A \vert < \varepsilon ∣f(x)−A∣<ε 。有$f(x) < A + \varepsilon = A - \frac{A}{2} = \frac{A}{2} < 0 $这与 f ( x ) ≥ 0 f(x) \geq 0 f(x)≥0 矛盾,故 A ≥ 0 A \geq 0 A≥0 。 (反证法)
03.3 无穷小的定义
如果函数 f ( x ) f(x) f(x) 当 x → x 0 x \to x_0 x→x0(或 x → ∞ x \to \infty x→∞)时的极限为零,那么称函数 f ( x ) f(x) f(x) 为当 x → x 0 x \to x_0 x→x0(或 x → ∞ x \to \infty x→∞)时的无穷小。 用数学语言表述为:
- lim x → x 0 f ( x ) = 0 \lim_{x \to x_0} f(x) = 0 limx→x0f(x)=0 ,则称 f ( x ) f(x) f(x) 是当 x → x 0 x \to x_0 x→x0 时的无穷小。
- lim x → ∞ f ( x ) = 0 \lim_{x \to \infty} f(x) = 0 limx→∞f(x)=0 ,则称 f ( x ) f(x) f(x) 是当 x → ∞ x \to \infty x→∞ 时的无穷小。
注:
- (脱帽法) lim x → ⋅ f ( x ) ⟺ A + α , lim x → ⋅ α = 0 \lim_{x \to \cdot} f(x) \Longleftrightarrow A + \alpha,\lim_{x \to \cdot} \alpha=0 limx→⋅f(x)⟺A+α,limx→⋅α=0,即 α \alpha α 是 x → ⋅ x\to\cdot x→⋅ 时的无穷小。
03.4 无穷小的性质
- 有限个无穷小的和仍是无穷小。
- 有限个无穷小的乘积仍是无穷小。
- 有界函数与无穷小的乘积是无穷小。
均可用夹逼定理证明。
03.5 无穷小的比阶
设 α ( x ) \alpha(x) α(x) 和 β ( x ) \beta(x) β(x) 都是在同一个自变量变化过程中的无穷小。
- 如果 lim x → ⋅ α ( x ) β ( x ) = 0 \lim_{x \to \cdot} \frac{\alpha(x)}{\beta(x)} = 0 limx→⋅β(x)α(x)=0,则称 α ( x ) \alpha(x) α(x) 是比 β ( x ) \beta(x) β(x) 高阶的无穷小,记作 α ( x ) = o ( β ( x ) ) \alpha(x) = o(\beta(x)) α(x)=o(β(x)) 。
- 如果 lim x → ⋅ α ( x ) β ( x ) = ∞ \lim_{x \to \cdot} \frac{\alpha(x)}{\beta(x)} = \infty limx→⋅β(x)α(x)=∞,则称 α ( x ) \alpha(x) α(x) 是比 β ( x ) \beta(x) β(x) 低阶的无穷小。
- 如果 lim x → ⋅ α ( x ) β ( x ) = C ≠ 0 \lim_{x \to \cdot} \frac{\alpha(x)}{\beta(x)} = C \neq 0 limx→⋅β(x)α(x)=C=0,则称 α ( x ) \alpha(x) α(x) 与 β ( x ) \beta(x) β(x) 是同阶无穷小。
- 如果 lim x → ⋅ α ( x ) β ( x ) = 1 \lim_{x \to \cdot} \frac{\alpha(x)}{\beta(x)} = 1 limx→⋅β(x)α(x)=1,则称 α ( x ) \alpha(x) α(x) 与 β ( x ) \beta(x) β(x) 是等价无穷小,记作 α ( x ) ∼ β ( x ) \alpha(x) \sim \beta(x) α(x)∼β(x) 。
03.6 常用无穷小
当 x → 0 x \to 0 x→0:
sin x \sin{x} sinx ~ tan x \tan{x} tanx ~ arcsin x \arcsin{x} arcsinx ~ arctan x \arctan{x} arctanx ~ e x − 1 e^x-1 ex−1~ ln ( 1 + x ) \ln{(1+x)} ln(1+x) ~ a x − 1 ln a \frac{a^x-1}{\ln{a}} lnaax−1 ~ ( 1 + x ) a − 1 a \frac{(1+x)^a-1}{a} a(1+x)a−1
注:
- 使用的时候注意广义化,当 f ( x ) → 0 f(x) \to 0 f(x)→0,上述等价无穷小中的 x x x 可以用 f ( x ) f(x) f(x) 代替。
- 上述均可使用泰勒展开和洛必达法则证明。
- 等价无穷小替换规则需要遵守恒等代换。
04. 计算
04.1 方法
04.1.1 极限的四则运算规则
当 f ( x ) f(x) f(x) 与 g ( x ) g(x) g(x) 的极限存在时,函数的加减乘除分别等于极限的加减乘除(除要求分母极限不为零)。
重要结论:
- 若 lim x → x 0 f ( x ) ⋅ g ( x ) \lim_{x\rightarrow x_0}{f(x)\cdot g(x)} limx→x0f(x)⋅g(x)极限存在, lim x → x 0 f ( x ) \lim_{x\rightarrow x_0}{f(x)} limx→x0f(x)极限存在且不为无穷小量,那么 lim x → x 0 g ( x ) \lim_{x\rightarrow x_0}{g(x)} limx→x0g(x)极限必定存在!(用于化简多项式)
扩展(可以在有关定参数题目中直接使用):
- 若 lim f ( x ) g ( x ) = A \lim{\frac{f(x)}{g(x)}}=A limg(x)f(x)=A,且 lim g ( x ) = 0 \lim{g(x)}=0 limg(x)=0,则 lim f ( x ) = 0 \lim{f(x)}=0 limf(x)=0;
- 若 lim f ( x ) g ( x ) = A ( A ≠ 0 ) \lim{\frac{f(x)}{g(x)}}=A(A\neq0) limg(x)f(x)=A(A=0),且 lim f ( x ) = 0 \lim{f(x)}=0 limf(x)=0,则 lim f ( x ) = 0 \lim{f(x)}=0 limf(x)=0。
04.1.2 洛必达法则
法则一: 0 0 \frac00 00 型
- 当 x → ⋅ x\rightarrow \cdot x→⋅ 时,函数 f ( x ) f(x) f(x) 和 F ( x ) F(x) F(x) 都趋于零;
- f ′ ( x ) f^{\prime}(x) f′(x) 及 F ′ ( x ) F^{\prime}(x) F′(x) 在点 a a a 的某去心邻域内(或当 ∣ x ∣ > X |x|>X ∣x∣>X,此时 X X X 为充分大的正数)存在,且 F ′ ( x ) ≠ 0 F^{\prime}(x)\neq0 F′(x)=0;
- lim x → ⋅ f ( x ) ′ g ( x ) ′ \lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}} limx→⋅g(x)′f(x)′ 存在或为无穷大,则 lim x → ⋅ f ( x ) g ( x ) = lim x → ⋅ f ( x ) ′ g ( x ) ′ \lim_{x\to \cdot}{\frac{f(x)}{g(x)}}=\lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}} limx→⋅g(x)f(x)=limx→⋅g(x)′f(x)′。
法则二: ∞ ∞ \frac{\infty}{\infty} ∞∞ 型
- 当 x → ⋅ x\rightarrow \cdot x→⋅ 时,函数 f ( x ) f(x) f(x) 和 F ( x ) F(x) F(x) 都趋于无穷大;
- f ′ ( x ) f^{\prime}(x) f′(x) 及 F ′ ( x ) F^{\prime}(x) F′(x) 在点 a a a 的某去心邻域内(或当 ∣ x ∣ > X |x|>X ∣x∣>X,此时 X X X 为充分大的正数)存在,且 F ′ ( x ) ≠ 0 F^{\prime}(x)\neq0 F′(x)=0;
- lim x → ⋅ f ( x ) ′ g ( x ) ′ \lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}} limx→⋅g(x)′f(x)′ 存在或为无穷大,则 lim x → ⋅ f ( x ) g ( x ) = lim x → ⋅ f ( x ) ′ g ( x ) ′ \lim_{x\to \cdot}{\frac{f(x)}{g(x)}}=\lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}} limx→⋅g(x)f(x)=limx→⋅g(x)′f(x)′。
注:
- ? ∞ \frac{?}{\infty} ∞? 型也可以使用洛必达法则;
- 洛必达法则可以在满足条件下多次连续使用;
- lim x → ⋅ f ( x ) g ( x ) = lim x → ⋅ f ( x ) ′ g ( x ) ′ \lim_{x\to \cdot}{\frac{f(x)}{g(x)}}=\lim_{x\to \cdot}{\frac{f(x)^{\prime}}{g(x)^{\prime}}} limx→⋅g(x)f(x)=limx→⋅g(x)′f(x)′ 中,右存在,则左存在,左存在,则右不一定存在。
04.1.3 泰勒公式
设 f ( x ) f(x) f(x) 在点 x = 0 x=0 x=0 处 n n n 阶可导,则存在 x = 0 x=0 x=0 的一个邻域,对于该邻域内的任一点 x x x,有 f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f n ( 0 ) n ! x n + ο ( x n ) f(x)=f(0)+f^{\prime}(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\cdots+\frac{f^{n}(0)}{n!}x^n+\omicron(x^n) f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!fn(0)xn+ο(xn)。
注:
- lim x → a R n ( x ) ( x − a ) n = 0 \lim_{x \to a} \frac{R_n(x)}{(x - a)^n} = 0 limx→a(x−a)nRn(x)=0;
04.1.4 无穷小的运算
-
ο ( x m ) ± ο ( x n ) = ο ( x l ) , l = min ( m , n ) \omicron(x^m)\pm\omicron(x^n)=\omicron(x^l),l=\min(m,n) ο(xm)±ο(xn)=ο(xl),l=min(m,n)(加减法时低阶吸收高阶);
-
ο ( x m ) ⋅ ο ( x n ) = ο ( x n + m ) , x m ⋅ ο ( x n ) = ο ( x n + m ) \omicron(x^m)\cdot\omicron(x^n)=\omicron(x^{n+m}),x^m\cdot\omicron(x^n)=\omicron(x^{n+m}) ο(xm)⋅ο(xn)=ο(xn+m),xm⋅ο(xn)=ο(xn+m)(乘法时阶数“累加”);
-
ο ( x m ) = ο ( k ⋅ x m ) = k ⋅ ο ( x m ) \omicron(x^m)=\omicron(k\cdot x^m)=k\cdot \omicron(x^m) ο(xm)=ο(k⋅xm)=k⋅ο(xm)(非零常数相乘不影响阶数);
-
ο ( x m ) ± ο ( x n ) = ο ( x l ) , l = min ( m , n ) \omicron(x^m)\pm\omicron(x^n)=\omicron(x^l),l=\min(m,n) ο(xm)±ο(xn)=ο(xl),l=min(m,n)(加减法时低阶吸收高阶);
-
ο ( x m ) ⋅ ο ( x n ) = ο ( x n + m ) , x m ⋅ ο ( x n ) = ο ( x n + m ) \omicron(x^m)\cdot\omicron(x^n)=\omicron(x^{n+m}),x^m\cdot\omicron(x^n)=\omicron(x^{n+m}) ο(xm)⋅ο(xn)=ο(xn+m),xm⋅ο(xn)=ο(xn+m)(乘法时阶数“累加”);
-
ο ( x m ) = ο ( k ⋅ x m ) = k ⋅ ο ( x m ) \omicron(x^m)=\omicron(k\cdot x^m)=k\cdot \omicron(x^m) ο(xm)=ο(k⋅xm)=k⋅ο(xm)(非零常数相乘不影响阶数);