【高等数学基础知识篇】——函数,极限与连续

本文仅用于个人学习记录,使用的教材为汤家凤老师的《高等数学辅导讲义》。本文无任何盈利或者赚取个人声望的目的,如有侵权,请联系删除!

一、函数基础知识

1.1 基本初等函数和初等函数

关于什么是函数,什么是反函数,这里就不再赘述,这里列举一下基本初等函数

函数名称函数
幂函数xa
指数函数ax(a > 0且a ≠ 1)
对数函数logax(a > 0且a ≠ 1)
三角函数sinx,cosx,tanx,cotx,secx,cscx
反三角函数arcsinx,arccosx,arctantx,arccotx

三角函数的基本关系

三角函数的基本关系

三角函数重要公式
三角函数重要公式
三角函数重要公式
指数运算法则

指数运算法则

对数运算法则

对数运算法则

下面贴出基本初等函数的图形

基本初等函数图形
基本初等函数图形
基本初等函数图形

1.2 函数的初等特性

初等特性说明
有界性y = f(x),(x∈D)。若∃M > 0,对∀x∈D,总有|f(x)| ≤ M,称函数f(x)在D上有界
单调性y = f(x),x∈D。若对∃x1,x2∈D,且x1 < x2,总有f(x1) < f(x2),称f(x)在D上单调递增。反之,单调递减
奇偶性函数图形关于原点对称为奇函数,关于y轴对称为偶函数。用公式表达为f(-x) = -f(x)为奇函数;f(-x) = f(x)为偶函数。
周期性y = f(x),(x∈D)。若∃T > 0,对∀x∈D,x ± T ∈D,有f(x ± T) = f(x),称f(x)是以T为周期的周期函数。

注:有界又可以分为有上界和有下界。函数f(x)有界的充要条件是,f(x)既有上界又有下界。

1.3 特殊函数

  • 符号函数sgn x
  • 狄利克雷函数D(x)。狄利克雷函数处处不连续,处处极限不存在,不可积分,是偶函数。
  • 取整函数

关于取整函数有以下内容

  • [x] ≤ x
  • [x + y] = [x] + [y]不一定成立
  • [x + m] = [x] + m一定成立,其中m为一个整数

二、函数题目类型

函数题目通常有求定义域,求反函数,证明有界性,单调性,奇偶性和周期性。

2.1 求定义域

求定义域比较简单,可能有的限制有

  • 分母不为零
  • 基本初等函数本身的限制
  • 二次根号下数值大于等于零

2.2 求反函数

求反函数题目

求反函数的思路就是将y = f(x)转换成x = f(y)。本题目的关键点在于知道下面的一个等式

关键等式

2.3 判断奇偶性

判断奇偶性例题

本题目需要明确几个知识点

  • 定积分交换上下限时对积分变量取负即可,也就是∫axf(x)dx = ∫-a-xf(-x)d(-x)
  • d(-x) = -d(x)
  • 定积分的可加性,若a<c<b,则∫abf(x)dx = ∫acf(x)dx + ∫cbf(x)dx

三、极限基础知识

3.1 极限的定义

情形定义
数列极限的定义(ε - N)对∀ε > 0,∃N > 0,当n > N时,有|an - A| ≤ ε,称A为数列an的极限,记为 lim ⁡ n → ∞ \lim_{n\rightarrow\infty} limnan = A
函数自变量趋于有限值的极限定义(ε - δ)对∀ε > 0,∃δ > 0,当0 < |x - a| < δ时,有|f(x) - A| < ε,称A为f(x)当x → \rightarrow a时的极限,记为 lim ⁡ x → \lim_{x\rightarrow} limxaf(x) = A
函数自变量趋于无穷大的极限定义(ε - X)对∀ε > 0,∃X > 0,当|x| > X时,有|f(x) - A| < ε,称A为f(x)当 x → ∞ x\rightarrow\infty x时的极限,记为 lim ⁡ x → ∞ \lim_{x\rightarrow\infty} limxf(x) = A
自变量趋于 − ∞ -\infty 时的极限定义对∀ε > 0,∃X > 0,当x < -X时,有|f(x) - A| < ε,称A为f(x)当 x → − ∞ x\rightarrow-\infty x时的极限,记为 lim ⁡ x → − ∞ \lim_{x\rightarrow-\infty} limxf(x) = A
自变量趋于 + ∞ +\infty +时的极限定义对∀ε > 0,∃X > 0,当x > X时,有|f(x) - A| < ε,称A为f(x)当 x → + ∞ x\rightarrow+\infty x+时的极限,记为 lim ⁡ x → + ∞ \lim_{x\rightarrow+\infty} limx+f(x) = A
  1. 需要补充的是,我们要真正的理解定义,如果将自变量趋于有限值的极限定义中的|f(x) - A| < ε改为|f(x) - A| < 3ε,是否A还是函数f(x)趋于有限值的极限?答案是,定义依然成立。因为无论是ε还是3ε,都是任意的值,都是符合定义的。
  2. 除了上面说的,对于函数自变量趋于有限值的极限,还分为左极限和右极限。函数在一个点极限存在的充要条件是,函数在该点左极限和右极限存在且相等。
  3. 对于 lim ⁡ x → \lim_{x\rightarrow} limxa arctant 1 x − a \frac{1}{x - a} xa1一定要分左右极限讨论。实际它的左右极限存在,但是不相等,一个为 Π 2 \frac{Π}{2} 2Π,一个为- Π 2 \frac{Π}{2} 2Π
  4. lim ⁡ n → ∞ \lim_{n\rightarrow\infty} limnan存在,则 lim ⁡ n → ∞ \lim_{n\rightarrow\infty} limn|an|存在;反之,不对。

3.2 极限的性质

3.2.1 极限的一般性质

性质叙述
唯一性若极限存在,则极限一定是唯一的
保号性 lim ⁡ x → \lim_{x\rightarrow} limxaf(x) = A > 0,则存在δ > 0,当0 < |x - a| < δ时,有f(x) > 0。函数极限正,则去心邻域正;函数极限负,则去心邻域负。
数列极限的有界性极限存在,数列必有界;反之,不对。
函数极限的局部有界性函数在某点的极限存在,则函数在其去心邻域内一定有界。
数列极限于子列极限的关系(1) 若数列极限存在,则该数列的任意子列存在相同的极限;(2) 若任意子列极限存在,则该数列极限不一定存在。

对于极限的保号性有两条推论

  • 函数不负,极限不负;函数不正,极限不负。也就是f(x) ≥ 0(或f(x) ≤ 0),且lim f(x) = A,则A ≥ 0(或A ≤ 0)。
  • 函数的大小次序与极限的大小次序一致。即f(x) ≥ g(x),且lim f(x) = A,lim g(x) = B,则A ≥ B。

值得注意的是上面是≥和≤,如果改成>和<,则不一定正确。`

3.2.2 极限的运算性质

首先介绍一下极限的四则运算性质。设lim f(x) = A,lim g(x) = B。

  1. lim[f(x) ± g(x)] = lim f(x) + lim g(x) = A ±B
  2. lim f(x)g(x) = AB
  3. lim f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x) = A B \frac{A}{B} BA,其中B ≠ 0

需要注意的是,如果lim f(x)或者lim g(x)不存在,则上面的性质不成立。

复合函数极限运算性质

  1. lim ⁡ u → \lim_{u\rightarrow} limuaf(u) = A, lim ⁡ x → \lim_{x\rightarrow} limxx0 φ(x) = a,但是φ(x) ≠ a,则 lim ⁡ x → \lim_{x\rightarrow} limxx0 f[φ(x)] = A
  2. lim ⁡ u → \lim_{u\rightarrow} limuaf(u) = f(a), lim ⁡ x → \lim_{x\rightarrow} limxx0 φ(x) = a,但是φ(x) ≠ a,则 lim ⁡ x → \lim_{x\rightarrow} limxx0 f[φ(x)] = f(a)

划重点
重点

3.3 极限存在准则

3.3.1 夹逼定理

(数列型)设an ≤ bn ≤ cn,若 lim ⁡ n → ∞ \lim_{n\rightarrow\infty} limnan = A, lim ⁡ n → ∞ \lim_{n\rightarrow\infty} limncn = A,则 lim ⁡ n → ∞ \lim_{n\rightarrow\infty} limnbn = A

(函数型)设f(x) ≤ g(x) ≤ h(x),lim f(x) = lim h(x) = A,则lim g(x) = A

需要注意的是,夹逼定理中的lim f(x) = lim h(x) = A,不可以用lim [f(x) - h(x)] = 0代替。

3.3.2 单调有界的数列必有极限

3.4 无穷小

3.4.1 无穷小的概念与比较

lim ⁡ x → \lim_{x\rightarrow} limxaα(x) = 0,称α(x)当x → \rightarrow a时为无穷小。

设α → \rightarrow 0,β → \rightarrow 0,若lim β α \frac{β}{α} αβ = 0,称β为α的高阶无穷小,记为β = o(α)。
若lim α β \frac{α}{β} βα = k(k ≠ 0),称β为α的同阶无穷小,记为β = O(α)。
若lim α β \frac{α}{β} βα = 1,称β为α的等价无穷小,记为α ~ β。

3.4.2 无穷小的性质

无穷小的基本性质

  1. 有限个无穷小的和、差、积仍为无穷小,常数与无穷小的积仍是无穷小。
  2. 有界函数与无穷小的积仍为无穷小。
  3. lim f(x) = A的充要条件是f(x) = A + α,其中α → \rightarrow 0。

等价无穷小的性质

  1. α ~ β => β ~ α
  2. α ~ β,β ~ γ => α ~ γ
  3. 若α ~ α1,β ~ β1,且lim β   1   α   1   \frac{β~1~}{α~1~} α 1 β 1  = A,则lim β α \frac{β}{α} αβ = A
  4. α ~ β的充要条件是β = α + o(α)

x →   0 \rightarrow\ 0  0时,常用的一些等价无穷小

常用的等价无穷小
x ~ sinx ~ tanx ~ arcsinx ~ arctantx ~ ln(1 + x) ~ ex - 1
1 - cosx ~ x 2 2 \frac{x^2}{2} 2x2
1 - cosax ~ a 2 \frac{a}{2} 2ax2
(1 + x)a - 1 ~ ax (a ≠ 0)
ax - 1 ~ xlna

3.5 两个重要的极限

lim ⁡ Δ →   0 s i n Δ Δ \lim_{Δ\rightarrow\ 0}\frac{sinΔ}{Δ} limΔ 0ΔsinΔ = 1
lim ⁡ Δ →   0 \lim_{Δ\rightarrow\ 0} limΔ 0(1 + Δ)1/Δ = e

3.6 几个常用不等式

  1. 当0 < α < Π 2 \frac{Π}{2} 2Π时,sinα < α < tanα
  2. 当x ≥ 0时,sinx ≤ x
  3. 当x > 0时,ln(1 + x) < x
  4. 当x ≠ 0时,ex > 1 + x

四、极限题目类型

4.1 证明数列极限为某一个值

紧扣定义即可

证明数列极限为某一个值例题

4.2 利用保号性判断极值点

利用保号性判断极值点有两种方法

  • 证明在其去心邻域内的值都小于或者大于该点函数值。
  • 证明该点导数为0,且在该点两侧导数值异号。

利用保号性判断极值点例题
本题需要明确以下内容

  • 函数连续,则极限值等于函数值。
  • 分母极限为0,整体极限存在,那么分子极限也为0。

利用保号性判断极值点例题

本题需要明确以下知识点

  • 原函数连续可导,其一阶导数一定连续。

4.3 求极限

求极限有常规的化简直接求,也有用到泰勒公式展开,二项式定理,或者用到夹逼定理,无穷小等价和两个重要极限来求。
求极限例题

本题需要明确以下知识点

  • 二项式定理
    二项式定理
  • Cnm = n ! m ! ( n − m ) ! \frac{n!}{m!(n-m)!} m!(nm)!n!

求极限例题

本题使用夹逼定理。

求极限例题

本题使用夹逼定理,关键点在于知道n! ≥ n(n - 1)(n - 2) (n ≥ 3)

求极限例题

本题利用夹逼定理求出函数f(x)的表达式,然后计算积分。

求极限例题

本题使用两个常用的极限来求解。

五、连续与间断基础知识

5.1 函数连续性概念

  • 函数f(x)在点x = a处连续 —— 设函数f(x)在x = a的邻域内有定义,若 lim ⁡ x →   a \lim_{x\rightarrow\ a} limx af(x) = f(a)或f(a - 0) = f(a + 0) = f(a),称f(x)在x = a处连续。(极限值等于函数值)
  • 若f(a - 0) = f(a),称f(x)在x = a处做连续;若f(a + 0) = f(a),称f(x)在x = a处右连续。

函数f(x)在[a,b]上连续 —— 设函数f(x)在[a,ba]上有定义,若满足

  • f(x)在(a,b)内连续;
  • f(a) = f(a + 0) = f(b - 0)

称函数f(x)在[a,b]上连续,记为f(x) ∈ [a,b]。

划重点

  1. 函数f(x)在点x = a处连续的充要条件是左极限等于右极限等于函数值。
  2. 若函数f(x)在点x = a处连续,则函数|f(x)|在点x = a处也连续。反之,不对。
  3. 若函数f(x)在点x = a处连续,则f(x)在点x = a的去心邻域内不一定连续。

5.2 间断点及分类

lim ⁡ x →   a \lim_{x\rightarrow\ a} limx af(x) ≠ f(a),称f(x)在x = a处不连续,且x = a为f(x)的间断点。间断点的分类如下

间断点描述
第一类间断点若f(a - 0),f(a + 0)都存在,称x = a为f(x)的第一类间断点,即左右极限都存在,但是不等于函数值
可去间断点若f(a - 0) = f(a + 0) ≠ f(a),称x = a为f(x)的可去间断点,即左右极限存在且相等,但是不等于函数值
跳跃间断点若f(a - 0) ≠ f(a + 0),称x = a为f(x)的跳跃间断点,即左极限不等于右极限
第二类间断点若f(a - 0),f(a + 0)至少有一个不存在,称x = a为f(x)的第二类间断点

5.3 闭区间上连续函数的性质

性质描述
最值定理若f(x) ∈ [a,b],则f(x)在[a,b]上一定存在最大值和最小值
有界定理若f(x) ∈ [a,b],则f(x)在[a,b]上一定有界
零点定理若f(x) ∈ [a,b],且f(a)f(b) < 0,则存在ξ ∈ (a,b),使得f(ξ) = 0
介值定理若f(x) ∈ [a,b],对任意的η ∈ [m,M],则存在ξ ∈ [a,b],使得f(ξ) = η

划重点

  1. 设f(x) ∈ [a,b],证明关于ξ ∈ (a,b)的命题时,一般使用零点定理。
  2. 设f(x) ∈ [a,b],证明关于ξ ∈ [a,b]的命题时,一般使用介值定理。
  3. 设f(x) ∈ [a,b],若出现函数值相加的条件,一般使用介值定理。

六、连续与间断题目类型

6.1 求间断点并分类

通常是看函数无定义的点,讨论左右极限,根据定义判断间断点类型。

求间断点并分类例题

6.2 利用闭区间上连续函数的性质证明命题

利用闭区间上连续函数的性质证明命题
本题需要明确以下知识点

  • 罗尔定理
    设f(x)在[a,b]上连续,在(a,b)内可导,f(a) = f(b),则存在ξ ∈ (a,b),使得f(ξ) = 0。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二土电子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值