BOJ 1452

k元环问题,即邻接矩阵的k次幂

用矩阵快速幂加速

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 110
#define inf -1000000000
using namespace std;

int n,m;

struct Matrix{
	int d[N][N];
};

Matrix multiply(Matrix a,Matrix b){
	Matrix res;
	int i,j,k;
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++){
			res.d[i][j]=inf;
			for(k=1;k<=n;k++){
				if(a.d[i][k] != inf && b.d[k][j] != inf)
					res.d[i][j]=max(res.d[i][j],a.d[i][k]+b.d[k][j]);
			}
		}
	return res;
}

Matrix solve(Matrix mp,int k){
	int i,j;
	Matrix res;
	
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++)
			if(i==j) res.d[i][j]=0;
			else res.d[i][j]=inf;

	while(k){
		if(k%2){
			res=multiply(res,mp);	
		}
		mp=multiply(mp,mp);
		k>>=1;
	}
	return res;
}

int main(){
	int i,j,k,t,T;
	int u,v,w;
	Matrix mp;
	scanf("%d",&T);
	for(t=1;t<=T;t++){
		scanf("%d %d %d",&n,&m,&k);	
		for(i=1;i<=n;i++)              //之前一直WA是这个初始化写在scanf之前了....
			for(j=1;j<=n;j++)
				mp.d[i][j]=inf;
		for(i=1;i<=m;i++){
			scanf("%d %d %d",&u,&v,&w);
			mp.d[u][v]=max(mp.d[u][v],w);
		}
		mp=solve(mp,k);
		int ans=inf;
		for(i=1;i<=n;i++) ans=max(ans,mp.d[i][i]);
		if(ans==inf) printf("No solution\n");
		else printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值