子串简写——蓝桥杯十四届2023

本文讨论了一种改进的算法,将查找长度大于等于k的c1c2串的时间复杂度从O(n^2)降低到O(nlogn),通过使用单调栈并结合C++的upper_bound函数实现,避免了整数溢出问题。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
分析
寻找长度大于等于k的c1c2串,很容易想到用尺取法

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define endl '\n'
int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int k;
	string str;
	char a,b;
	cin>>k;
	cin>>str>>a>>b;
	vector<int> st;
	LL result=0;
	for(int i=0;i<str.size();i++){
		if(str[i]==a){
			for(int j=i+k-1;j<str.size();j++){
				if(str[j]==b){
					result++;
				}
			}
		}
	}
	cout<<result<<endl;
	return 0;
}

不过这种方法时间复杂度为O(n^2),超时了。这里我想到了可以用单调栈来写,每次遍历到a时,则将其下标添加到单调递增栈中,每次遍历到b时,则在单调栈中找到与b相距大于等于k的那个a的下标,那么至此往前的a均符合条件。这里我采用了upper_bound函数来寻找单调栈中a的下标。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define endl '\n'
int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    int k;
    string str;
    char a,b;
    cin>>k;
    cin>>str>>a>>b;
    vector<int> st;
    LL result=0;
    for(int i=0;i<str.size();i++){
        if(str[i]==a){
            st.push_back(i);
        }else if(str[i]==b){
            int w=i-k+1;
            if(st.size()==0||st[0]>w)continue;//没有一个元素符合条件
            if(st.back()<=w){//所有元素都满足条件
                result+=st.size();
                continue;
            }
            int p=upper_bound(st.begin(),st.end(),w)-st.begin();
            result+=p;
        }
        
    }
    cout<<result<<endl;
    return 0;
}

采用这种方法的时间复杂度为O(nlogn),更加有效,不过要注意的是子串的数量可能撑爆int的范围,需要用long long来存储

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值