- 博客(197)
- 收藏
- 关注

原创 CVPR2025 | 对抗样本&智能安全方向论文汇总 | 持续更新中~
文章汇总CVPR2025中对抗样本&智能安全方向的相关论文和GitHub链接,同时每篇文章附有摘要。
2025-03-20 16:45:56
4156

原创 【学习笔记】MATLAB与数学建模——蒙特卡罗模拟&仿真
蒙特卡洛模拟&仿真蒲丰投针三门问题排队问题有约束的非线性规划问题0-1规划问题导弹追踪问题仿真旅行商问题加油站存储策略
2022-04-29 18:15:51
25826
2
原创 BMVC2023 | 多样化高层特征以提升对抗迁移性
本文 “Diversifying the High-level Features for better Adversarial Transferability” 提出多样化高级特征(DHF)方法,利用 DNNs 参数冗余,在梯度计算时对高层特征随机变换并与良性样本特征混合,提升对抗样本迁移性。
2025-05-17 09:15:00
723
原创 TIFS2024 | CRFA | 基于关键区域特征攻击提升对抗样本迁移性
本文 “Improving Transferability of Adversarial Samples via Critical Region-Oriented Feature-Level Attack” 提出基于关键区域的特征级攻击(CRFA)方法提升对抗样本迁移性,包括扰动注意力感知加权(PAW)和区域 ViT 关键检索(RVR)。
2025-05-17 09:00:00
908
原创 AAAI2024 | 基于特征多样性对抗扰动攻击 Transformer 模型
本文 “Attacking Transformers with Feature Diversity Adversarial Perturbation” 提出一种针对基于 Vision Transformer(ViT)模型的无标签白盒攻击方法Feature Diversity Adversarial Perturbation(FDAP)。
2025-05-16 09:15:00
737
原创 TIFS2024 | PE攻击: 基于Transformer模型中通用位置嵌入的漏洞
本文 “PE-Attack: On the Universal Positional Embedding Vulnerability in Transformer-Based Models” 指出 Transformer 模型中位置嵌入(PEs)存在潜在漏洞。
2025-05-16 09:00:00
1330
原创 CVPR2024 | SlowFormer: 针对高效视觉 Transformer 计算与能耗的对抗攻击
本文 “SlowFormer: Adversarial Attack on Compute and Energy Consumption of Efficient Vision Transformers” 指出,深度学习模型在推理时的计算优化有进展,自适应计算减少方法有潜力,但易受攻击。
2025-05-15 09:15:00
724
原创 CVPR2024 | Token 变换至关重要: 用于视觉 Transformer 的可信事后解释
本文 “Token Transformation Matters: Towards Faithful Post-hoc Explanation for Vision Transformer” 提出TokenTM这一新颖的后验解释方法,通过测量 token 变换效应(考虑长度和方向变化),并结合注意力权重,建立聚合框架整合多层信息,以获得更忠实的解释。
2025-05-15 09:00:00
1086
原创 S&P2024 | 为何微小的鲁棒性会有帮助?进一步理解对抗迁移性
本文 “Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability” 聚焦对抗样本的可迁移性,从代理模型角度深入研究。
2025-05-14 09:15:00
1411
原创 CVPR2025 | SATA: 用于增强视觉 Transformer 鲁棒性的空间自相关 Token 分析
本文 “SATA: Spatial Autocorrelation Token Analysis for Enhancing the Robustness of Vision Transformers” 提出空间自相关 token 分析(SATA)方法提升视觉 Transformer(ViT)的鲁棒性和性能。SATA 利用 token 特征间空间关系,在自注意力机制的前馈网络(FFN)块前对 token 按空间自相关得分分析分组,无需重新训练或微调就能集成到现有预训练 ViT 中,还降低 FFN 计算负载。
2025-05-14 09:00:00
824
原创 TIFS2025 | AES | 对抗样本汤: 免费提升可迁移性与隐蔽性
本文 “Adversarial Example Soups: Improving Transferability and Stealthiness for Free” 提出 “对抗样本汤” AES,通过平均丢弃的对抗样本(包括最优样本)提升攻击可迁移性和隐蔽性。
2025-05-13 09:15:00
1084
1
原创 CVPR2025 | LibraGrad: 平衡梯度流以普遍提升视觉 Transformer 归因效果
本文 “LibraGrad: Balancing Gradient Flow for Universally Better Vision Transformer Attributions” 指出基于梯度的解释方法在 Transformer 中存在梯度流不平衡问题,导致归因不忠实。为此提出 LibraGrad,这是一种通过修剪和缩放反向路径来纠正梯度不平衡的后处理方法,且不改变前向传递和增加计算开销。
2025-05-13 09:00:00
883
原创 AAAI2025 | MPVG | 通过全局平均池化最大化视觉 Transformer 位置嵌入的效用
本文 “Maximizing the Position Embedding for Vision Transformers with Global Average Pooling” 提出 MPVG 方法,用于解决视觉 Transformer 中全局平均池化(GAP)与分层结构结合时位置嵌入(PE)的问题。
2025-05-12 09:15:00
1140
原创 CVPR2025 | Prompt-CAM: 让视觉 Transformer 可解释以进行细粒度分析
本文 “Prompt-CAM: Making Vision Transformers Interpretable for Fine-Grained Analysis” 提出 Prompt-CAM 方法,旨在使预训练的视觉 Transformer(ViT)可解释以用于细粒度分析。该方法通过学习类特定提示,利用预训练 ViT 的特征,实现细粒度图像分类、特征定位等功能。
2025-05-12 09:00:00
1235
原创 CVPR2023 | StyLess: 提升对抗样本的可迁移性
现有可迁移攻击在优化时未区分风格和内容特征,限制了攻击可迁移性。本文 “StyLess: Boosting the Transferability of Adversarial Examples” 提出 StyLess 攻击方法,通过使用风格化代理模型控制风格特征,避免对抗样本依赖非鲁棒的风格特征,显著提高了对抗样本的可迁移性。
2025-05-11 09:15:00
1055
原创 CVPR2017 | ResNeXt | 深度神经网络的聚合残差变换
本文 “Aggregated Residual Transformations for Deep Neural Networks” 提出了一种简单且高度模块化的图像分类网络架构ResNeXt。它重复具有相同拓扑结构的构建块来聚合一组变换,引入 “基数” 概念,通过实验证明在保持计算复杂度和模型大小的情况下,增加基数能提高分类准确率,且比加深或加宽网络更有效
2025-05-11 09:00:00
802
原创 ICCV2021 | Visformer: 视觉友好型 Transformer
本文提出了 Visformer,通过逐步将基于 Transformer 的模型转换为基于卷积的模型,研究两者性能差异的原因。作者对比了 DeiT-S 和 ResNet-50 在不同训练设置下的表现,发现 Transformer 模型在精英设置下表现好但对训练策略依赖大,卷积模型在基础设置下表现更优。经 8 步转换,吸收两者优点设计出 Visformer。
2025-05-10 09:03:55
855
原创 AAAI2025 | NumbOD:一种针对目标检测器的空间-频率融合攻击方法
本文 “NumbOD: A Spatial-Frequency Fusion Attack Against Object Detectors” 提出NumbOD,一种全新的针对目标检测器的模型无关空间-频率融合攻击方法。它通过双轨攻击目标选择策略选取高质量边界框作为攻击目标,从空间和频率两个维度设计攻击。在空间域,对预测框坐标和分类结果进行干扰;在频率域,通过离散小波变换等手段扰乱图像高频信息。
2025-05-10 09:00:00
1020
原创 CVPR2022 | TransMix:面向视觉 Transformer 的混合方法
本文 “TransMix: Attend to Mix for Vision Transformers” 提出TransMix,一种用于视觉 Transformer(ViT)的数据增强技术。它基于 ViT 的注意力图混合标签,解决了以往 mixup 方法中输入与标签空间不一致的问题。无需引入额外参数和计算量,就能提升多种 ViT 模型在 ImageNet 分类任务的准确率。
2025-05-09 09:15:00
907
原创 Arxiv2024 | DeSparsify: 针对 Token 稀疏化机制的对抗攻击
Vision transformers(ViT)在计算机视觉领域表现卓越,但计算需求高,token 稀疏化机制可提升其资源效率。然而,这些机制的动态性和平均情况假设使其易受攻击。本文提出 DeSparsify 攻击,针对使用 token 稀疏化机制的 Vit 的可用性,通过定制损失函数生成对抗样本,使稀疏化机制失效,同时保持模型原始分类。
2025-05-09 09:00:00
857
原创 Arxiv2024 | 下游迁移攻击:利用预训练视觉Transformer对下游模型进行对抗攻击
随着视觉 Transformer(ViTs)和自监督学习技术发展,预训练大模型被广泛应用于下游任务,但 ViTs 易受对抗攻击。本文研究对抗漏洞从预训练 ViT 模型到下游任务的转移性,提出下游转移攻击(DTA)方法。DTA 利用预训练 ViT 模型生成对抗样本攻击下游微调模型,通过平均令牌余弦相似度(ATCS)确定最脆弱层以实现高度可迁移性攻击。
2025-05-08 09:15:00
881
原创 Arxiv2025 | 表征漏洞的机理理解与构建稳健的视觉 Transformer
Vision Transformers(ViTs)在计算机视觉领域取得显著成果,但易受对抗攻击。本文深入剖析其表征漏洞,发现对抗扰动在早期层影响微弱,随后在网络中传播并放大。基于此,提出 NeuroShield-ViT 防御机制,通过选择性中和早期层脆弱神经元来抵御攻击。
2025-05-08 09:00:00
1293
原创 CVPR2024 |论视觉Transformer解释的忠实性
本文 “On the Faithfulness of Vision Transformer Explanations” 提出了一种名为 Salience-guided Faithfulness Coefficient(SaCo)的新评估指标,用于评估视觉 Transformer 解释方法的忠实性。现有指标在评估忠实性方面存在不足,而 SaCo 通过对不同像素子集的影响进行显式比较和对显著分数差异的量化,更全面地评估解释的忠实性。
2025-05-07 09:15:00
1209
原创 CVPR2024 | 鲁棒性Token:迈向Transformer的对抗鲁棒性
本文 “Robustness Tokens: Towards Adversarial Robustness of Transformers” 提出Robustness Tokens(ROB tokens)这一针对 Transformer 架构的新方法,旨在提升模型对抗攻击的鲁棒性。通过在输入序列中添加少量可学习的秘密token,而非像传统对抗训练那样调整模型参数,在不影响下游任务性能的同时,使 Vision Transformer 模型对白盒对抗攻击更具鲁棒性。
2025-05-07 09:00:00
1038
原创 CVPR2024 | LaViT | 视觉 Transformer 各阶段仅需较少注意力
本文 “You Only Need Less Attention at Each Stage in Vision Transformers” 提出了LaViT,旨在解决 Vision Transformers(ViTs)中自注意力机制计算复杂度高和注意力饱和问题。LaViT 在每个阶段仅在少数初始层计算传统自注意力,后续层通过注意力变换利用之前计算的注意力分数,减少计算量。同时引入注意力残差模块保留上下文信息,设计对角保持损失函数维持注意力矩阵特性。
2025-05-06 09:15:00
1268
原创 CVPR2025 | CLIP足够强大以反击:针对CLIP零样本对抗鲁棒性的测试时反击
本文 “CLIP is Strong Enough to Fight Back: Test-time Counterattacks towards Zero-shot Adversarial Robustness of CLIP” 聚焦 CLIP 对抗攻击的鲁棒性问题,指出现有对抗训练和提示调整方法存在训练耗时、过拟合和损害干净图像分类精度等局限。提出测试时反击(TTC)范式,利用 CLIP 预训练视觉编码器反击对抗图像,实现鲁棒性,且无需训练。
2025-05-06 09:00:00
1372
原创 ICLR2024 | GNS-HFA | 通过梯度归一化缩放和高频适应增强视觉 Transformer 的可迁移对抗攻击
本文 “Enhancing Transferable Adversarial Attacks On Vision Transformers Through Gradient Normalization Scaling And Highfrequency Adaptation” 提出 Gradient Normalization Scaling 和 High-Frequency Adaptation(GNS-HFA)方法,通过对温和梯度进行归一化缩放以及探索高频区域来增强对抗样本对 ViTs 的可转移性。在
2025-05-05 09:56:25
1275
原创 CVPR2023 | 视觉 Transformer 鲁棒性与准确性之间的权衡
本文 “Trade-off between Robustness and Accuracy of Vision Transformers” 提出了 TORA-ViTs(Trade-off between Robustness and Accuracy of Vision Transformers),旨在解决视觉 Transformer 在自然精度和对抗鲁棒性之间的权衡问题。通过添加精度和鲁棒性适配器分别提取预测性和鲁棒性特征,利用基于注意力的门控融合模块进行特征融合,并采用两阶段训练策略。
2025-05-05 09:38:22
1281
原创 ICCV2023 | 视觉 Transformer 的 Token-标签对齐
本文 “Token-Label Alignment for Vision Transformers” 提出了用于视觉 Transformer(ViTs)训练的Token-Label Alignment(TL-Align)方法,旨在解决数据混合策略应用于 ViTs 时出现的token波动现象。通过追踪输入和转换后token的对应关系,为每个输出token获取对齐的标签,以提供更准确的训练信号。
2025-05-04 16:13:47
1085
原创 ICCV2023 | 从路径集成视角重新审视视觉Transformer
本文 “Revisiting Vision Transformer from the View of Path Ensemble” 提出一种新视角,将视觉 Transformer(ViT)看作包含多条不同长度并行路径的集成网络。通过等效变换,把传统的多头自注意力(MHSA)和前馈网络(FFN)级联转换为三条并行路径,进而转化为显式多路径集成网络。
2025-05-04 10:46:22
1107
原创 CVPR2023 | 通过降低对图像块损坏的敏感性来提高视觉Transformer的鲁棒性
本文 “Improving Robustness of Vision Transformers by Reducing Sensitivity to Patch Corruptions” 提出一种新训练方法降低对 patch 损坏的敏感性(RSPC) 以提升视觉 Transformer 的鲁棒性,通过构建 patch 损坏模型找出易受攻击的 patch,用随机噪声遮挡,再通过特征对齐稳定注意力层。实验表明,RSPC 在多个基准测试中显著提升模型鲁棒性,且在准确性和鲁棒性间取得更好平衡,训练成本更低。
2025-05-04 09:59:40
1237
原创 CVPR2021 | 超越注意力可视化的Transformer可解释性
本文提出一种基于深度泰勒分解原理计算 Transformer 网络相关性的新方法,通过设计相关性传播规则、归一化项,整合注意力和相关性分数来应对 Transformer 中跳跃连接和注意力机制带来的挑战。在视觉 Transformer 网络和文本分类问题的基准测试中,该方法在定性评估、正负扰动测试、分割测试和语言推理任务上均优于现有可解释性方法,为 Transformer 的可解释性提供了有效解决方案。
2025-05-04 08:58:14
870
原创 CVPR2021 | 重新思考视觉Transformer中的自注意力机制
本文对视觉 Transformer 中自注意力机制进行研究。通过分析发现其在图像(ImageNet1K)和视频(Kinetics-400)理解的推理中极为稀疏。提出用掩码机制对注意力图计算进行稀疏化处理,介绍了 6 种掩码模式生成方法。实验表明,手动设计或数据驱动的掩码优于随机掩码,且视觉 Transformer 模型在 95% 稀疏度下性能损失小于 2 点,但当前掩码模型的 FLOPs 减少存在上限,在 DeiT-base 和 TimeSFormer ST 中分别最多为 4% 和 25% 。
2025-05-03 10:39:56
1273
原创 ICML2021 | DeiT | 训练数据高效的图像 Transformer 与基于注意力的蒸馏
本文提出数据高效的图像 Transformer(DeiT),仅在 Imagenet 上训练就能得到与卷积神经网络(convnets)性能相当的无卷积 Transformer。引入基于蒸馏 token 的师生策略,该策略能让学生模型通过注意力机制向教师模型学习,尤其是以 convnet 为教师时效果显著,使得 DeiT 在 Imagenet 上最高可达 85.2% 的准确率,且在迁移学习任务中表现出色。
2025-05-03 10:15:23
1491
原创 ICCV2021 | PiT | 重新思考视觉Transformer的空间维度
本文围绕视觉 Transformer 展开研究,指出 ViT 未考虑类似 CNN 的空间维度转换,影响模型性能。通过实验验证 ResNet 风格的维度配置能提升模型能力和泛化性能,进而提出 Pooling-based Vision Transformer(PiT),其设计了新的池化层以实现空间维度缩减。实验表明 PiT 在计算量更低的情况下,于 ImageNet 分类、目标检测、鲁棒性基准测试等任务上性能优于 ViT,且在一定规模上超越卷积神经网络,为视觉 Transformer 架构设计提供了新方向。
2025-05-02 10:05:39
1113
原创 ICCV2021 | 重新思考并改进视觉 Transformer 的相对位置编码
本文 “Rethinking and Improving Relative Position Encoding for Vision Transformer” 聚焦于视觉 Transformer 中的相对位置编码(RPE),回顾了现有方法并分析其优缺点,提出了四种专为 2D 图像设计的 iRPE 方法,包括偏置和上下文两种模式及不同的 2D 相对位置计算方式,还给出了高效实现。实验表明 iRPE 方法能有效提升 DeiT 和 DETR 性能,且分析得出 RPE 在不同任务中的特性等结论。
2025-05-02 09:22:33
1076
原创 ICCV2021 | 理解用于图像分类的 Transformer 的鲁棒性
本文 “Understanding Robustness of Transformers for Image Classification” 主要研究视觉 Transformer(ViT)模型的鲁棒性。研究发现,ViT 模型越大鲁棒性提升越明显;FGSM 攻击对 ViT 模型更有效,但 PGD 攻击下与CNN同样脆弱;ViT 模型的patch大小影响其鲁棒性,小patch尺寸对对抗空间变换更鲁棒但纹理偏差更大;ViT 模型层间存在冗余,对单个层的移除有一定鲁棒性,且后期层主要更新 CLS 标记的表示。
2025-04-29 09:00:00
1237
原创 ICCV2021 | 视觉Transformer对对抗样本的鲁棒性研究
本文 “On the Robustness of Vision Transformers to Adversarial Examples” 围绕视觉 Transformer(ViT)对对抗样本的鲁棒性展开研究。通过白盒攻击和黑盒攻击测试多种 ViT、BiT-M和CNN,发现 ViT 在白盒攻击下和其他模型一样脆弱;同时,研究发现对抗样本在不同模型类别间迁移率较低。为此提出用不同模型的集成作为防御手段,设计自注意力混合梯度攻击证明集成防御在黑盒攻击下,基于集成的防御能显著提升鲁棒性,且不牺牲干净准确率。
2025-04-29 08:55:57
921
原创 NIPS2021 | 视觉 Transformer 的有趣特性
本文 “Intriguing Properties of Vision Transformers” 系统研究了视觉 Transformer(ViT)的特性,并与CNN对比。发现 ViT 对严重遮挡、扰动和域偏移具有高度鲁棒性;其对形状的识别能力强,纹理偏差小,经训练可实现无像素级监督的语义分割;ViT 的现成特征可组合成特征集合,在传统和少样本学习范式中表现出色。研究还探讨了位置编码等因素对 ViT 性能的影响,为后续研究提供了方向。
2025-04-28 17:43:57
921
原创 CVPR2025 | FPR | 通过前向传播优化提高视觉 Transformer 的对抗迁移性
本文 “Improving Adversarial Transferability on Vision Transformers via Forward Propagation Refinement” 提出通过前向传播优化(FPR)提升视觉 Transformer(ViTs)对抗样本迁移性的方法。FPR 由注意力图多样化(AMD)和动量 Token 嵌入(MTE)组成,AMD 通过随机加权多样化注意力图,隐式诱导梯度消失减轻过拟合,MTE 通过积累历史 Token 嵌入稳定更新。实验表明,FPR 在不同模型
2025-04-28 09:53:53
1106
基于多种机器学习算法的分类预测研究
2022-11-16
LendingClub2018-2020部分数据和字段释义
2022-11-15
编码多源数据集(预处理后的多源数据集)
2022-11-15
机器学习结课论文-基于多种机器学习算法的分类预测研究
2022-11-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人