自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(206)
  • 收藏
  • 关注

原创 CVPR2025 | 对抗样本&智能安全方向论文汇总 | 持续更新中~

文章汇总CVPR2025中对抗样本&智能安全方向的相关论文和GitHub链接,同时每篇文章附有摘要。

2025-03-20 16:45:56 11433

原创 【学习笔记】MATLAB与数学建模——蒙特卡罗模拟&仿真

蒙特卡洛模拟&仿真蒲丰投针三门问题排队问题有约束的非线性规划问题0-1规划问题导弹追踪问题仿真旅行商问题加油站存储策略

2022-04-29 18:15:51 26970 3

原创 ICCV2025 | GLEAM:通过全局-局部变换增强的面向视觉-语言预训练模型的可迁移对抗性攻击

为解决视觉语言预训练(VLP)模型黑盒对抗攻击中数据增强不足、全局语义结构破坏导致的对抗迁移性差问题,研究者提出GLEAM(Global-Local Enhanced Adversarial Multimodal attack)框架,该框架整合局部特征增强(LFE)、全局分布扩展(GDE) 和跨模态特征对齐(CMFA) 三大模块,在 Flickr30K、MSCOCO 等数据集上的图像文本检索(ITR)、视觉定位(VG)、图像描述(IC)任务中表现优异。

2025-11-04 22:17:30 697

原创 ICCV2025 | SID | 利用空间不变性提高对抗性转移能力

该论文提出空间不变性多样性(SID)攻击方法,旨在解决现有输入变换类对抗攻击未充分利用深度神经网络(DNNs)空间不变性、仅关注单一位置行为模式导致对抗迁移性受限的问题。SID 通过局部感受野内的混合空间频率融合机制、多尺度空间下采样及随机变换的位置扰动生成输入集合,激活 DNNs 多位置多尺度的多样行为模式。

2025-11-04 19:52:57 996

原创 CVPR2025 | OPS | 通过假设空间增强提升对抗迁移性

该论文提出 OPS(Operator-Perturbation-based Stochastic Optimization,基于算子扰动的随机优化)方法,核心灵感源于模型泛化能力与对抗样本迁移性的镜像关系,通过在假设空间中对代理模型进行 “模型增强”(输入变换算子组合与随机扰动采样)构建随机优化问题,生成迁移性更强的对抗样本;在图像和 3D 点云 两种模态上验证,OPS 在迁移攻击成功率和计算开销上显著优于现有 SOTA 方法,同时构建了首个 3D 点云迁移攻击基准 3DTAB,为相关研究提供统一评估框架。

2025-10-22 15:18:17 1035

原创 ACM MM2023 | AdvCLIP:多模态对比学习中与下游任务无关的对抗样本

本文提出 AdvCLIP,这是首个针对跨模态预训练编码器(以 CLIP 为主要研究对象)的下游任务无关对抗样本生成攻击框架;该框架通过构建拓扑图结构捕捉样本与邻居的关联位置,并设计基于拓扑偏差的生成对抗网络(GAN) 生成通用对抗图块,将图块添加到图像后,可最小化不同模态嵌入相似度并扰动特征空间样本分布,实现通用非目标攻击;在 8 个数据集上针对图像-文本检索和图像分类两类下游任务的实验显示,AdvCLIP 对 CLIP 的 5 种骨干网络均有优异攻击效果,且对数据损坏、参数剪枝、对抗训练三种防御方法仍具抗

2025-10-21 20:05:41 910

原创 Arxiv2025 | MEF | 通过极大极小期望平坦度实现低成本优化以提升对抗迁移性

该研究针对基于迁移的对抗攻击中现有平坦度增强方法存在定义碎片化、优化失衡及理论基础缺失的问题,首次建立了基于平坦度的迁移性理论框架,提出Maximin Expected Flatness (MEF) 攻击;MEF 通过统一多阶平坦度定义,设计邻域条件采样 (NCS) 高效识别最差区域、梯度平衡优化(GBO) 复用梯度降低计算成本,以一半计算成本超过 SOTA 的 PGN 攻击。

2025-10-21 09:08:38 443

原创 ICCV2025 | ResPA | 通过残差扰动攻击提高对抗迁移性

本文提出一种名为 Residual Perturbation Attack(ResPA) 的新型对抗攻击方法,旨在解决现有基于迁移的对抗攻击中因过度依赖当前梯度方向导致对抗样本易陷入损失函数尖锐区域、迁移性有限的问题。ResPA 通过指数移动平均(EMA) 整合历史梯度得到参考梯度,以当前梯度与参考梯度的差值(即残差梯度)作为扰动方向,引导对抗样本朝向损失函数的平坦区域,同时将平坦项作为正则化项融入损失最大化优化。

2025-10-20 09:04:49 647

原创 ICCV2025 | dSVA | 利用自监督视觉 Transformer 特征提高生成式对抗迁移性

本文提出dSVA(生成式双自监督 ViT 特征攻击),通过利用自监督视觉 Transformer(ViT)的双重特征 ——对比学习提取的全局结构特征与掩码图像建模提取的局部纹理特征,结合生成式训练框架提升对抗样本的黑盒可迁移性;该方法创新地针对 ViT 自注意力块的内部层面特征(查询、键、值) 而非中间层直接输出,并通过自注意力机制提取显著性图作为语义引导,最终在实验中实现对多种架构模型及对抗训练防御模型的高效攻击。

2025-10-20 09:03:49 1090

原创 NIPS2025 | SAA | 利用空间对抗对齐提升对抗迁移性

本文 “Boosting Adversarial Transferability with Spatial Adversarial Alignment” 提出空间对抗对齐(SAA)技术,通过空间感知对齐和对抗感知对齐,利用对齐损失和见证模型微调代理模型,显著提升对抗样本的迁移性,特别是在跨架构攻击场景中。

2025-10-16 16:20:07 442

原创 AAAI2025 | AWT | 通过对抗权重调整增强对抗迁移性

本文提出了对抗权重调整(AWT)算法。研究首先从理论上重新定义可迁移性,证明可通过局部扰动缩小代理模型与目标模型的差距,并揭示模型平滑性与平坦局部极值对可迁移性的内在关联;AWT 作为无数据调优方法,无需额外数据,通过生成的 AEs 自适应调整代理模型参数,同时优化平坦局部极值与模型平滑性,融合了基于梯度与基于模型的攻击的优势。

2025-10-16 16:19:20 441

原创 ICCV2025 | 对抗样本&智能安全方向论文汇总 | 持续更新中~

总结 ICCV2025 对抗样本&智能安全方向相关论文及代码库链接,附有文章摘要。

2025-08-02 10:23:55 2026 1

原创 BMVC2023 | 多样化高层特征以提升对抗迁移性

本文 “Diversifying the High-level Features for better Adversarial Transferability” 提出多样化高级特征(DHF)方法,利用 DNNs 参数冗余,在梯度计算时对高层特征随机变换并与良性样本特征混合,提升对抗样本迁移性。

2025-05-17 09:15:00 1063

原创 TIFS2024 | CRFA | 基于关键区域特征攻击提升对抗样本迁移性

本文 “Improving Transferability of Adversarial Samples via Critical Region-Oriented Feature-Level Attack” 提出基于关键区域的特征级攻击(CRFA)方法提升对抗样本迁移性,包括扰动注意力感知加权(PAW)和区域 ViT 关键检索(RVR)。

2025-05-17 09:00:00 1515

原创 AAAI2024 | 基于特征多样性对抗扰动攻击 Transformer 模型

本文 “Attacking Transformers with Feature Diversity Adversarial Perturbation” 提出一种针对基于 Vision Transformer(ViT)模型的无标签白盒攻击方法Feature Diversity Adversarial Perturbation(FDAP)。

2025-05-16 09:15:00 1127

原创 TIFS2024 | PE攻击: 基于Transformer模型中通用位置嵌入的漏洞

本文 “PE-Attack: On the Universal Positional Embedding Vulnerability in Transformer-Based Models” 指出 Transformer 模型中位置嵌入(PEs)存在潜在漏洞。

2025-05-16 09:00:00 1575

原创 CVPR2024 | SlowFormer: 针对高效视觉 Transformer 计算与能耗的对抗攻击

本文 “SlowFormer: Adversarial Attack on Compute and Energy Consumption of Efficient Vision Transformers” 指出,深度学习模型在推理时的计算优化有进展,自适应计算减少方法有潜力,但易受攻击。

2025-05-15 09:15:00 882

原创 CVPR2024 | Token 变换至关重要: 用于视觉 Transformer 的可信事后解释

本文 “Token Transformation Matters: Towards Faithful Post-hoc Explanation for Vision Transformer” 提出TokenTM这一新颖的后验解释方法,通过测量 token 变换效应(考虑长度和方向变化),并结合注意力权重,建立聚合框架整合多层信息,以获得更忠实的解释。

2025-05-15 09:00:00 1284

原创 S&P2024 | 为何微小的鲁棒性会有帮助?进一步理解对抗迁移性

本文 “Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability” 聚焦对抗样本的可迁移性,从代理模型角度深入研究。

2025-05-14 09:15:00 1626

原创 TIFS2025 | AES | 对抗样本汤: 免费提升可迁移性与隐蔽性

本文 “Adversarial Example Soups: Improving Transferability and Stealthiness for Free” 提出 “对抗样本汤” AES,通过平均丢弃的对抗样本(包括最优样本)提升攻击可迁移性和隐蔽性。

2025-05-13 09:15:00 1322 1

原创 CVPR2025 | LibraGrad: 平衡梯度流以普遍提升视觉 Transformer 归因效果

本文 “LibraGrad: Balancing Gradient Flow for Universally Better Vision Transformer Attributions” 指出基于梯度的解释方法在 Transformer 中存在梯度流不平衡问题,导致归因不忠实。为此提出 LibraGrad,这是一种通过修剪和缩放反向路径来纠正梯度不平衡的后处理方法,且不改变前向传递和增加计算开销。

2025-05-13 09:00:00 1156

原创 AAAI2025 | MPVG | 通过全局平均池化最大化视觉 Transformer 位置嵌入的效用

本文 “Maximizing the Position Embedding for Vision Transformers with Global Average Pooling” 提出 MPVG 方法,用于解决视觉 Transformer 中全局平均池化(GAP)与分层结构结合时位置嵌入(PE)的问题。

2025-05-12 09:15:00 1328

原创 CVPR2025 | Prompt-CAM: 让视觉 Transformer 可解释以进行细粒度分析

本文 “Prompt-CAM: Making Vision Transformers Interpretable for Fine-Grained Analysis” 提出 Prompt-CAM 方法,旨在使预训练的视觉 Transformer(ViT)可解释以用于细粒度分析。该方法通过学习类特定提示,利用预训练 ViT 的特征,实现细粒度图像分类、特征定位等功能。

2025-05-12 09:00:00 1782

原创 CVPR2023 | StyLess: 提升对抗样本的可迁移性

现有可迁移攻击在优化时未区分风格和内容特征,限制了攻击可迁移性。本文 “StyLess: Boosting the Transferability of Adversarial Examples” 提出 StyLess 攻击方法,通过使用风格化代理模型控制风格特征,避免对抗样本依赖非鲁棒的风格特征,显著提高了对抗样本的可迁移性。

2025-05-11 09:15:00 1266

原创 CVPR2017 | ResNeXt | 深度神经网络的聚合残差变换

本文 “Aggregated Residual Transformations for Deep Neural Networks” 提出了一种简单且高度模块化的图像分类网络架构ResNeXt。它重复具有相同拓扑结构的构建块来聚合一组变换,引入 “基数” 概念,通过实验证明在保持计算复杂度和模型大小的情况下,增加基数能提高分类准确率,且比加深或加宽网络更有效

2025-05-11 09:00:00 950

原创 ICCV2021 | Visformer: 视觉友好型 Transformer

本文提出了 Visformer,通过逐步将基于 Transformer 的模型转换为基于卷积的模型,研究两者性能差异的原因。作者对比了 DeiT-S 和 ResNet-50 在不同训练设置下的表现,发现 Transformer 模型在精英设置下表现好但对训练策略依赖大,卷积模型在基础设置下表现更优。经 8 步转换,吸收两者优点设计出 Visformer。

2025-05-10 09:03:55 986

原创 AAAI2025 | NumbOD:一种针对目标检测器的空间-频率融合攻击方法

本文 “NumbOD: A Spatial-Frequency Fusion Attack Against Object Detectors” 提出NumbOD,一种全新的针对目标检测器的模型无关空间-频率融合攻击方法。它通过双轨攻击目标选择策略选取高质量边界框作为攻击目标,从空间和频率两个维度设计攻击。在空间域,对预测框坐标和分类结果进行干扰;在频率域,通过离散小波变换等手段扰乱图像高频信息。

2025-05-10 09:00:00 1242

原创 CVPR2022 | TransMix:面向视觉 Transformer 的混合方法

本文 “TransMix: Attend to Mix for Vision Transformers” 提出TransMix,一种用于视觉 Transformer(ViT)的数据增强技术。它基于 ViT 的注意力图混合标签,解决了以往 mixup 方法中输入与标签空间不一致的问题。无需引入额外参数和计算量,就能提升多种 ViT 模型在 ImageNet 分类任务的准确率。

2025-05-09 09:15:00 1117

原创 Arxiv2024 | DeSparsify: 针对 Token 稀疏化机制的对抗攻击

Vision transformers(ViT)在计算机视觉领域表现卓越,但计算需求高,token 稀疏化机制可提升其资源效率。然而,这些机制的动态性和平均情况假设使其易受攻击。本文提出 DeSparsify 攻击,针对使用 token 稀疏化机制的 Vit 的可用性,通过定制损失函数生成对抗样本,使稀疏化机制失效,同时保持模型原始分类。

2025-05-09 09:00:00 1007

原创 Arxiv2024 | 下游迁移攻击:利用预训练视觉Transformer对下游模型进行对抗攻击

随着视觉 Transformer(ViTs)和自监督学习技术发展,预训练大模型被广泛应用于下游任务,但 ViTs 易受对抗攻击。本文研究对抗漏洞从预训练 ViT 模型到下游任务的转移性,提出下游转移攻击(DTA)方法。DTA 利用预训练 ViT 模型生成对抗样本攻击下游微调模型,通过平均令牌余弦相似度(ATCS)确定最脆弱层以实现高度可迁移性攻击。

2025-05-08 09:15:00 1023

原创 Arxiv2025 | 表征漏洞的机理理解与构建稳健的视觉 Transformer

Vision Transformers(ViTs)在计算机视觉领域取得显著成果,但易受对抗攻击。本文深入剖析其表征漏洞,发现对抗扰动在早期层影响微弱,随后在网络中传播并放大。基于此,提出 NeuroShield-ViT 防御机制,通过选择性中和早期层脆弱神经元来抵御攻击。

2025-05-08 09:00:00 1469

原创 CVPR2024 |论视觉Transformer解释的忠实性

本文 “On the Faithfulness of Vision Transformer Explanations” 提出了一种名为 Salience-guided Faithfulness Coefficient(SaCo)的新评估指标,用于评估视觉 Transformer 解释方法的忠实性。现有指标在评估忠实性方面存在不足,而 SaCo 通过对不同像素子集的影响进行显式比较和对显著分数差异的量化,更全面地评估解释的忠实性。

2025-05-07 09:15:00 1322

原创 CVPR2024 | 鲁棒性Token:迈向Transformer的对抗鲁棒性

本文 “Robustness Tokens: Towards Adversarial Robustness of Transformers” 提出Robustness Tokens(ROB tokens)这一针对 Transformer 架构的新方法,旨在提升模型对抗攻击的鲁棒性。通过在输入序列中添加少量可学习的秘密token,而非像传统对抗训练那样调整模型参数,在不影响下游任务性能的同时,使 Vision Transformer 模型对白盒对抗攻击更具鲁棒性。

2025-05-07 09:00:00 1278

原创 CVPR2024 | LaViT | 视觉 Transformer 各阶段仅需较少注意力

本文 “You Only Need Less Attention at Each Stage in Vision Transformers” 提出了LaViT,旨在解决 Vision Transformers(ViTs)中自注意力机制计算复杂度高和注意力饱和问题。LaViT 在每个阶段仅在少数初始层计算传统自注意力,后续层通过注意力变换利用之前计算的注意力分数,减少计算量。同时引入注意力残差模块保留上下文信息,设计对角保持损失函数维持注意力矩阵特性。

2025-05-06 09:15:00 1488

原创 CVPR2025 | CLIP足够强大以反击:针对CLIP零样本对抗鲁棒性的测试时反击

本文 “CLIP is Strong Enough to Fight Back: Test-time Counterattacks towards Zero-shot Adversarial Robustness of CLIP” 聚焦 CLIP 对抗攻击的鲁棒性问题,指出现有对抗训练和提示调整方法存在训练耗时、过拟合和损害干净图像分类精度等局限。提出测试时反击(TTC)范式,利用 CLIP 预训练视觉编码器反击对抗图像,实现鲁棒性,且无需训练。

2025-05-06 09:00:00 2048

原创 ICLR2024 | GNS-HFA | 通过梯度归一化缩放和高频适应增强视觉 Transformer 的可迁移对抗攻击

本文 “Enhancing Transferable Adversarial Attacks On Vision Transformers Through Gradient Normalization Scaling And Highfrequency Adaptation” 提出 Gradient Normalization Scaling 和 High-Frequency Adaptation(GNS-HFA)方法,通过对温和梯度进行归一化缩放以及探索高频区域来增强对抗样本对 ViTs 的可转移性。在

2025-05-05 09:56:25 1485

原创 CVPR2023 | 视觉 Transformer 鲁棒性与准确性之间的权衡

本文 “Trade-off between Robustness and Accuracy of Vision Transformers” 提出了 TORA-ViTs(Trade-off between Robustness and Accuracy of Vision Transformers),旨在解决视觉 Transformer 在自然精度和对抗鲁棒性之间的权衡问题。通过添加精度和鲁棒性适配器分别提取预测性和鲁棒性特征,利用基于注意力的门控融合模块进行特征融合,并采用两阶段训练策略。

2025-05-05 09:38:22 1475

原创 ICCV2023 | 视觉 Transformer 的 Token-标签对齐

本文 “Token-Label Alignment for Vision Transformers” 提出了用于视觉 Transformer(ViTs)训练的Token-Label Alignment(TL-Align)方法,旨在解决数据混合策略应用于 ViTs 时出现的token波动现象。通过追踪输入和转换后token的对应关系,为每个输出token获取对齐的标签,以提供更准确的训练信号。

2025-05-04 16:13:47 1312

原创 ICCV2023 | 从路径集成视角重新审视视觉Transformer

本文 “Revisiting Vision Transformer from the View of Path Ensemble” 提出一种新视角,将视觉 Transformer(ViT)看作包含多条不同长度并行路径的集成网络。通过等效变换,把传统的多头自注意力(MHSA)和前馈网络(FFN)级联转换为三条并行路径,进而转化为显式多路径集成网络。

2025-05-04 10:46:22 1204

原创 CVPR2023 | 通过降低对图像块损坏的敏感性来提高视觉Transformer的鲁棒性

本文 “Improving Robustness of Vision Transformers by Reducing Sensitivity to Patch Corruptions” 提出一种新训练方法降低对 patch 损坏的敏感性(RSPC) 以提升视觉 Transformer 的鲁棒性,通过构建 patch 损坏模型找出易受攻击的 patch,用随机噪声遮挡,再通过特征对齐稳定注意力层。实验表明,RSPC 在多个基准测试中显著提升模型鲁棒性,且在准确性和鲁棒性间取得更好平衡,训练成本更低。

2025-05-04 09:59:40 1354

基于多种机器学习算法的分类预测研究

本资源为原创论文的word版。 可用于机器学习课程的结课论文。 本文在对Lending Club数据集进行初步数据分析的基础上,通过选取4组不同的特征,采用同一种算法(逻辑回归,LR)进行分类预测,最终确定3个相对较优特征为:loan_amnt,annual_inc,term。随后本文针对“多源数据集”,采用神经网络、贝叶斯分类器和决策树三种算法对数据进行分类预测,最终综合三种算法的模型结果参数,确定决策树为三者最优。最后,本文仍选取Lending Club数据集作为研究对象,经预处理后,选取数据的55个特征,并将二分类问题变为三分类问题。之后,采用单一树类模型——决策树,以及集成树类模型——随机森林和极端随机树对数据进行分类预测,对比模型结果参数,得出结论:集成算法相比较于单一算法有更好的准确度和泛化能力,但是相应模型也会消耗更多计算机资源。

2022-11-16

机器学习结课论文-基于多种机器学习算法的分类预测研究

可用于机器学习课程的结课论文。 本文在对Lending Club数据集进行初步数据分析的基础上,通过选取4组不同的特征,采用同一种算法(逻辑回归,LR)进行分类预测,最终确定3个相对较优特征为:loan_amnt,annual_inc,term。随后本文针对“多源数据集”,采用神经网络、贝叶斯分类器和决策树三种算法对数据进行分类预测,最终综合三种算法的模型结果参数,确定决策树为三者最优。最后,本文仍选取Lending Club数据集作为研究对象,经预处理后,选取数据的55个特征,并将二分类问题变为三分类问题。之后,采用单一树类模型——决策树,以及集成树类模型——随机森林和极端随机树对数据进行分类预测,对比模型结果参数,得出结论:集成算法相比较于单一算法有更好的准确度和泛化能力,但是相应模型也会消耗更多计算机资源。

2022-11-15

编码多源数据集(预处理后的多源数据集)

文件为多源数据集的编码形式,即预处理之后的数据 用于我的另一资源:基于多种机器学习算法的分类预测研究 该资源为机器学习结课论文,本文在对Lending Club数据集进行初步数据分析的基础上,通过选取4组不同的特征,采用同一种算法(逻辑回归,LR)进行分类预测,最终确定3个相对较优特征为:loan_amnt,annual_inc,term。随后本文针对“多源数据集”,采用神经网络、贝叶斯分类器和决策树三种算法对数据进行分类预测,最终综合三种算法的模型结果参数,确定决策树为三者最优。最后,本文仍选取Lending Club数据集作为研究对象,经预处理后,选取数据的55个特征,并将二分类问题变为三分类问题。之后,采用单一树类模型——决策树,以及集成树类模型——随机森林和极端随机树对数据进行分类预测,对比模型结果参数,得出结论:集成算法相比较于单一算法有更好的准确度和泛化能力,但是相应模型也会消耗更多计算机资源

2022-11-15

LendingClub2018-2020部分数据和字段释义

包括LendingClub2018-2020部分数据(sheet1),以及部分字段的释义(sheet2) 用于我的另一资源:基于多种机器学习算法的分类预测研究 该资源为机器学习结课论文,本文在对Lending Club数据集进行初步数据分析的基础上,通过选取4组不同的特征,采用同一种算法(逻辑回归,LR)进行分类预测,最终确定3个相对较优特征为:loan_amnt,annual_inc,term。随后本文针对“多源数据集”,采用神经网络、贝叶斯分类器和决策树三种算法对数据进行分类预测,最终综合三种算法的模型结果参数,确定决策树为三者最优。最后,本文仍选取Lending Club数据集作为研究对象,经预处理后,选取数据的55个特征,并将二分类问题变为三分类问题。之后,采用单一树类模型——决策树,以及集成树类模型——随机森林和极端随机树对数据进行分类预测,对比模型结果参数,得出结论:集成算法相比较于单一算法有更好的准确度和泛化能力,但是相应模型也会消耗更多计算机资源

2022-11-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除