安装 pytorch 以及 pytorch 基本命令(用法)总结

目录

 

一、 安装 pytorch

二、 pytorch 基本命令

1. tensor 的生成与设置

2. tensor 的基本运算

3. tensor 与 Numpy 之间的相互转换


一、 安装 pytorch

首先, 在 Anaconda prompt 中安装 pytorch, 这里我们使用了清华源镜像

pip install --user -i https://pypi.tuna.tsinghua.edu.cn/simple torch

或者是在 pycharm 中点击左上角的File, Setting 中点击 Project Interpreter  右上角的添加, 安装即可

二、 pytorch 基本命令

1. tensor 的生成与设置

首先, 引入 torch

from __future__ import print_function
import torch

其中, 第一句代码的意思是: 即使在python2.X,使用 print 也得像python3.X那样加括号使用。(python2.X中 print 不需要括号,而在 python3.X 中则需要)

我们可以查看 torch 的版本

torch.__version__

构建一个5*3未初始化的矩阵

x = torch.empty(5,3)

构建一个5*3随机初始化的矩阵

x = torch.rand(5,3)
print(x)

构建一个类型为long的0矩阵

x = torch.zeros(5, 3, dtype=torch.long)
print(x)

x = torch.eye(3)

使用 torch.full 来创建所有元素均为一个值的tensor

torch.full(size=(2, 3), fill_value=3.1415926)

直接从数据来定义张量(tensor)

x = torch.tensor([5.5, 3])
print(x)

torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])

使用 torth.arange 来创建张量

torth.arange(0, 0.5, 4)

使用 torth.linspace 来创建张量

torch.linspace(3, 10, steps=20)

由一个已知的张量来创建另一个张量, 例如类型变化

x = torch.ones(5, 3, dtype=torch.double)
print(x)

x = torch.randn_like(x, dtype=torch.float)
print(x)

查看 x 的大小

print(x.shape)

 值得注意的是: 这里的 torch.Size 是 tuple 类型

2. tensor 的基本运算

“+”:直接加

y = torch.rand(5, 3)
print(x+y)

或者是

print(torch.add(x, y))

可以给相加的结果赋给另外一个tensor变量

result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)

还可以这样来写

y.add_(x)

需要注意的是:任何使张量就地变化的操作都要用_固定。 

对 tensor, 可以像 Numpy 那样索引

print(x[:,1])

可以使用 torch.view 对tensor 进行排列, 例如

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1,8)
print(x.size(), y.size(), z.size())

使用 .item() 可以将元素张量变为 python 数字

x = torch.randn(1)
print(x)
print(x.item())

使用 .numel 返回张量的元素总数

x = torch.randn(1, 2, 4, 5)
print(torch.numel(x))

使用 torch.cat() 在给定维度上连接给定序列张量的序列

torch.where(conditionxy

x = torch.randn(3, 2)
y = torch.ones(3, 2)
print(x)
torch.where(x>0, x, y)

3. tensor 与 Numpy 之间的相互转换

将 tensor 转化为 numpy

a = torch.ones(5)
b = a.numpy()
print(a)
print(b)

将 numpy 转化为 tensor

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值