这篇文章介绍一种用来拟合多精度数据的神经网络。 在科学计算中,低精度的数据往往是廉价的、大量的;高精度数据则不同,他们是昂贵的、少量的,所以如何充分利用不同精度的数据来得到更加 precise 的结果便是一个需要解决的问题。这里我们利用神经网络给出了一个回答。
基本思想
想法很简单。假定 { x i , y i } i = 1 N l \{x_i,y_i\}_{i=1}^{N_l} {
xi,yi}i=1Nl 是我们有的低精度数据,其中 x i x_i xi 是输入变量, y i y_i yi 是预测变量; { x i , y i } i = N l + 1 N l + N h \{x_i,y_i\}_{i=N_l+1}^{N_l+N_h} {
xi,yi}i=Nl+1Nl+Nh 是高精度数据。 一般情况下, N l > N h N_l>N_h Nl
Multi-fidelity DNNs : 多精度深度神经网络
最新推荐文章于 2023-01-14 10:45:36 发布
