Multi-fidelity DNNs : 多精度深度神经网络

本文介绍了一种用于拟合多精度数据的神经网络方法,通过结合大量低精度数据和少量高精度数据,提高预测准确性。首先使用低精度数据训练神经网络,再利用高精度数据进行校正,最终实现从低精度到高精度的转换。

这篇文章介绍一种用来拟合多精度数据的神经网络。 在科学计算中,低精度的数据往往是廉价的、大量的;高精度数据则不同,他们是昂贵的、少量的,所以如何充分利用不同精度的数据来得到更加 precise 的结果便是一个需要解决的问题。这里我们利用神经网络给出了一个回答。
基本思想
想法很简单。假定 { x i , y i } i = 1 N l \{x_i,y_i\}_{i=1}^{N_l} { xi,yi}i=1Nl 是我们有的低精度数据,其中 x i x_i xi 是输入变量, y i y_i yi 是预测变量; { x i , y i } i = N l + 1 N l + N h \{x_i,y_i\}_{i=N_l+1}^{N_l+N_h} { xi,yi}i=Nl+1Nl+Nh 是高精度数据。 一般情况下, N l > N h N_l>N_h Nl

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值