强化学习用 Sarsa 算法与 Q-learning 算法实现FrozenLake-v0

基础知识

关于Q-learning 和 Sarsa 算法, 详情参见博客 强化学习(Q-Learning,Sarsa)
Sarsa 算法框架为Sarsa算法
Q-learning 算法框架为
在这里插入图片描述

关于FrozenLake-v0环境介绍, 请参见https://copyfuture.com/blogs-details/20200320113725944awqrghbojzsr9ce
在这里插入图片描述
此图来自 强化学习FrozenLake求解

需要注意的细节

训练时

  • 采用 ϵ \epsilon ϵ 贪心算法;
# 贪婪动作选择,含嗓声干扰
a = np.argmax(Q_all[s, :] + np.random.randn(1, env.action_space.n) * (1. / (i + 1)))
  • 对 Q-learning 算法
# 更新Q表
# Q-learning
Q_all[s, a] = Q_all[s, a] + alpha * (r + gamma * np.max(Q_all[s1, :]) - Q_all[s, a])
  • 对 Sarsa 算法
# sarsa
# 更新Q表
a_ = np.argmax(Q_all[s1, :] + np.random.randn(1, env.action_space.n) * (1. / (i + 1)))
Q_all[s, a] = Q_all[s, a] + alpha * (r + gamma * Q_all[s1, a_] - Q_all[s
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值