用全连接神经网络解决Letter Recognition分类任务(Python)

首先,我们要下载Letter Recognition数据。 Letter Recognition 是字符识别任务,有20000个数据,每个数据17维,其中有一维是给定标签(26个英文字母)。

我们首先下载Letter Recognition 数据集,见

http://archive.ics.uci.edu/ml/machine-learning-databases/letter-recognition/
在这里插入图片描述
点击data 下载。
其次,我们要用python 加载数据,我们用pandas的read_csv来加载

import torch
from torch import nn as nn
from torch.nn import functional as F
from torch import optim
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import time
torch.set_default_tensor_type(torch.DoubleTensor)
'''load letter-recognition dataset'''
dataset = pd.read_csv('letter-recognition.data')
data = np.array(dataset.T)

之后将数据集划分为训练集和测试集,并且将标签转化为数字,即A,B,C之类的转化为0到25

X_train = data[1:, :16000].T  # [16000, 16]
X_train_label = data[0:1, :16000].T  # [16000, 1]
for i in range(len(X_train_label)):
    X_train_label[i, :] = float(ord(str(X_train_label[i, :])[2]) - ord('A'))
X_train = torch.from_numpy
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值