基于迁移学习和脑电的疲劳检测方法研究

2 篇文章 0 订阅
1 篇文章 0 订阅

目标

目标是能实际使用,为了保证用户体验,有几个限制条件:

  • 便携: 脑电采集设备必须是可穿戴设备,因此采集导联不会太多,甚至可能只有1导联
  • 友好: 不支持长时间的校正数据采集,且要处于非疲劳时采集
  • 在线: 要做成在线系统,实时进行反馈,可以有适当延迟

问题

有多人的清醒和疲劳数据作为源域数据,新采集到的少量清醒数据作为目标域数据。因为要做在线同时只有清醒数据,这个问题可能与传统的迁移学习方法不同,另外由于自发脑电信号的非平稳性增加了迁移学习的难度。

解决方法

目前没有什么特别好的解决方法,比较实用的几种方法:
源域数据选择: 选择与目标域比较 “相似” 的源域数据进行建模,如何进行数据选择是重点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值