迁移学习综述

Introduction
尽管传统的机器学习在分类、回归等领域取得了极大的成功,但是在实际场景中仍然有很多限制。其原因是机器学习遵循两个重要的假设:(1)有足够多的训练数据以得到足够好的模型(2)训练数据和测试数据在同一个特征空间,并遵循相同的分布。
但是现实中,并不是所有的场景都遵循上述条件。许多例子都印证了上述观点,例如(1)wifi实时定位问题。wifi实时定位一个特定时间段的数据与另一个时间段的数据通常不遵循相同的分布。由此导致某一时间段训练的模型在下一时间段使用时定位精度降低。(2)互联网文件分类问题。不同网站文件的特征空间和数据分布一般不同,这导致旧网站的模型无法很好的在新网站中进行分类。并且在新的网站中,有标签数据缺乏导致无法训练出令人满意的模型。
对人来说,人们可以把相关的事物结合起来进行知识迁移,例如骑自行车与骑摩托车。如果令机器也具有这种能力, 将一个成熟(机器学习效果好)领域的数据,模型等迁移到一个不成熟或者未知的领域中,使得后者的机器学习效果显著增强,那么机器学习的运用领域将会大大扩展。按照上述思想,迁移学习的定义为:运用已存有的知识对不同但相关领域问题进行求解的一种新的机器学习方法。它放宽了传统机器学习中的两个基本假设,目的是迁移已有的知识来解决目标领域中仅有少量有数据甚至没有数据的学习问题。
在这篇综述中,主要从迁移什么的角度介绍了迁移学习的分类并就如何迁移介绍了相应的算法。剩余部分的行文组织如下,在接下来的五章,主要讨论迁移学习的分类、每种分类的算法介绍、目前工作的不足、未来展望以及结论。
Overview
Definition
迁移学习主要有两个重要的概念:
域:域包含两部分,特征空间X和边缘概率分布P(X),D={X,P(X)}
任务:一任务个由两部分组成,标签空间Y和目标预测函数f,T={Y,F}
迁移学习主要有以下三个研究问题:1)迁移什么2)如何迁移3)何时迁移 迁移什么是区分在源域中的数据哪些与目标域相关,哪些与目标域无关。如何迁移指的是通过什么样的方法可以使源域的数据可以直接或间接运用于目标任务中。何时迁移指的是对于某种迁移方法在什么情况下运用效果最好。
本文的迁移学习方法总结
Categorization of Transfer Learning
基于实例的迁移学习:
基于实例的迁移学习主要思想是根据某个原则从源域挑选出和目标域相似度比较高的数据,并把这些数据迁移到目标域中帮助目标域模型的训练,从而解决目标域训练数据少的问题。该迁移学习方法通过度量源域数据和目标域数据的相似度来重新分配源域中数据在目标域中的权重,相似度大的源域数据权重高,否则权重被降低。
上海交通大学Dai等人提出了TrAdaboost方法,将AdaBoost的思想应用于迁移学习中,提高有利于目标分类任务的数据权重、降低不利于目标分类任务的数据权重,并基于PAC理论推导了模型的泛化误差上界。黄等人提出核均值匹配方法(Kernel MeanMatching, KMM)对于概率分布进行估计,目标是使得加权后的源域和目标域的概率分布尽可能相近。吴蕾等提出迁移稀疏分层概率自组织图(Transfer Sparse Hierarchical Probabilistic Self- Organizing⁃Graph,TSHiPSOG)方法。该方法首先在源域和目标域中分别提取多层次、多颗粒度的表示向量,并且采用最大信息系数(Maxi⁃malInformation Coefficient,MIC)来度量源域和目标域表示向量的相似性程度,然后再利用源域中的部分表示向量帮助目标域的分类器的学习。同时,该方法在算法迭代过程中加入稀疏项约束,不仅可以防止模型在单领域数据上出现过拟合现象,而且可以有效提取并利用源域知识,提升目标域学习的准确性。吕静把bagging集成方法和聚类算法相结合实现样本的迁移。首先用不同的聚类算法对相同的学习数据进行聚类,然后对每一个聚类结果进行加权投票。通过bagging集成技术对源域数据进行过滤,根据投票结果将那些与目标域数据聚类在一起的源域数据留下,剔除那些未与目标数据聚在一起的源域数据,从而通过聚类挑选出和目标域相似度高的数据。最后利用这些数据来帮助目标域的学习。
基于特征的迁移学习:
基于特征的迁移学习主要是在源域和目标域之间寻找典型特征代表,来进一步弱化两个域之间的差异,从而实现知识的跨领域迁移。该迁移方法进一步又可分为特征选择迁移学习和特征映射迁移学习。
(1)基于特征选择的迁移学习,关注的是如何找出源领域与目标领域之间共同的特征表示,然后利用这些特征进行知识迁移。
(2)基于特征映射的迁移学习,关注的是如何将源领域和目标领域的数据从原始特征空间映射到新的特征空间中去。
香港科技大学的Pan等人提出的迁移成分分析方法(Transfer Component Analysis, TCA)是其中较为典型的一个方法。该方法的核心内容是以最大均值差异(Maximum Mean Discrepancy, MMD)作为度量准则,将不同数据领域中的分布差异最小化。加州大学伯克利分校的Blitzer等人提出了一种基于结构对应的学习方法(Structural CorrespondingLearning, SCL),该算法可以通过映射将一个空间中独有的一些特征变换到其他所有空间中的轴特征上,然后在该特征上使用机器学习的算法进行分类预测。清华大学龙明盛等人提出在最小化分布距离的同时,加入实例选择的迁移联合匹配(Tran-fer Joint Matching, TJM)方法,将实例和特征迁移学习方法进行了有机的结合。澳大利亚卧龙岗大学的Jing Zhang等人提出对于源域和目标域各自训练不同的变换矩阵,从而达到迁移学习的目标。Gong等人在2012年提出GFK。它通过一个特征映射,把源域和目标域变换到一个距离最小的公共空间上。
基于模型的迁移学习
基于模型的迁移学习是指从源域和目标域中找到他们之间共享的参数信息,以实现迁移的方法。这种迁移方式要求的假设条件是:源域中的数据与目标域中的数据可以共享一些模型的参数。
中科院计算所的Zhao等人提出了TransEMDT方法。该方法首先针对已有标记的数据,利用决策树构建鲁棒性的行为识别模型,然后针对无标定数据,利用K-Means聚类方法寻找最优化的标定参数。西安邮电大学的Deng等人也用超限学习机做了类似的工作。香港科技大学的Pan等人利用HMM,针对Wifi室内定位在不同设备、不同时间和不同空间下动态变化的特点,进行不同分布下的室内定位研究。清华大学龙明盛等人改进了深度网络结构,通过在网络中加入概率分布适配层,进一步提高了深度迁移学习网络对于大数据的泛化能力。目前绝大多数基于模型的迁移学习方法都与深度神经网络进行结合。这些方法对现有的一些神经网络结构进行修改,在网络中加入领域适配层,然后联合进行训练。
基于关系的迁移学习
基于关系的迁移学习指的是源域数据与目标域数据之间存在一定的相关性,通过建立源域数据与目标域数据的关系模型来实现知识的迁移。
基于关系的迁移学习方法的相关研究工作非常少,这些文章都借助于马尔科夫逻辑网络(Markov Logic Net)来挖掘不同领域之间的关系相似性。
不足:
(1)迁移学习的过程为将源域的数据间接或直接运用于目标域,这个过程隐含了一个前提条件,即目标域与源域是相关的。那么如何度量这两个领域的相似性呢,目前还没有该问题的通用解答。
(2)迁移学习有一个非常重要的问题,那就是如何避免负迁移。负迁移是由于源域与目标域相关性不大,通过迁移学习使目标模型效果变差。如果前一个问题没有得到解决,那么这个问题也得不到根本解决。
(3)可否在两个相关性不大的两个领域进行迁移学习以进一步提高机器学习的适应性?
未来展望:
(1)为了解决上述第二个问题,可以采用多源、多角度迁移学习。该方法将源域目标域特征空间分为多个维度,多个领域。一个领域的知识毕竟是有限的,可以尝试运用多个相关领域的知识来帮助目标领域的学习,即把多源域,多角度学习和迁移学习结合起来,这样可以增加寻找到和对目标域学习更加有利知识的机会,从而提高迁移学习的学习效率与效果,使得迁移学习变的更加安全与稳定,有效避免负迁移的发生。例如基于生理信号的情绪识别可以采用脑电信号,外周生理信号(皮肤电、血压、呼吸、皮肤温度、肌电、眼电)等多方面知识进行模型的训练。
(2)为解决上述第三个问题,可以采用远域迁移学习,通过几个领域的连续迁移使得两个相关性不大的两个领域实现远域迁移学习。例如杨强教授团队于2017 年人工智能领域顶级会议AAAI上发表了远领域迁移学习的文章Distant domain transfer learning可以用人脸识别模型来识别飞机。
结论:
首先,必须要认识到迁移学习是一种思想,它是为了解决一类问题而提出的。其研究背景是为了解决当数据缺失或者训练数据与输入数据分布不同时所造成的模型效果不佳的问题。这意味着它可以扩充目标域数据量并与传统的机器学习相结合,以此来解决上述问题。它的核心是迁移什么、如何迁移、何时迁移。本文从迁移什么的角度介绍了迁移学习的分类并就如何迁移介绍了相应的算法。最后本文就现阶段迁移学习存在的问题与迁移学习的进一步发展做了总结。未来,多角度学习,多源域学习,远域迁移学习,构建更加有效的源域目标域相关性模型与降低负迁移可能会成为热门的研究方向。

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值