AS-Net: Attention Synergy Network for skin lesion segmentation
AS-Net:用于皮肤病变分割的注意力协同网络
作者:Kai Hu 等
发表期刊:Expert Systems With Applications 一区 2022年
摘要:
皮肤镜图像中皮肤病灶的准确分割对皮肤癌的早期诊断至关重要。
然而,由于病灶边界模糊、病灶形状不规则以及各种干扰因素的存在,这仍然是一项具有挑战性的任务。
本文提出了一种新的注意协同网络(Attention Synergy Network, AS-Net),将空间注意机制和通道注意机制结合起来,增强皮肤损伤分割的判别能力。空间注意路径捕捉空间维度上的病变相关特征,而通道注意路径则选择性地强调通道维度上的区别性特征。协同模块旨在优化空间和信道信息的整合,并引入加权二元交叉熵损失函数来强调前景病变区域。综合实验表明,我们提出的模型在ISIC2017挑战中以最高的总分实现了最先进的性能,并且在ISIC2018和PH2数据集上都优于几种流行的深度神经网络。
文章贡献:
•提出了一种新的注意力协同网络,以提高皮肤损伤分割的判别能力。在AS-Net中,空间注意机制和渠道注意机制的结果有效地结合在一起,其中两个模块的贡献通过以下协同模块进行自适应调整。其中,空间注意用于定位病灶等信息区域,而通道注意则强调区别性特征,抑制无关信息。
•为了进一步强调皮肤损伤区域,解决不同损伤大小的不平衡问题,提出了一个新的损失函数,引导模型聚焦于前景区域。
•在三个公开可用的数据集上进行了广泛的实验,以评估AS-Net对其他方法的影响。结果表明,我们在ISIC2017数据集上实现了最先进的性能,并且在ISIC2018和PH2数据集上都优于最近流行的模型。
方法:
文章所提出的AS-Net专门用于解决皮肤病变分割中的多种挑战。它具有如图2所示的编码器-解码器架构。由五个阶段组成的编码器用于嵌入特征,这些特征随后被馈送到由两个注意路径组成的解码器中,以学习空间和通道维度的判别特征。两个路径的输出通过协同模块进一步组合,以生成更精确的分割结果。
面临的挑战。在医学图像分析任务中,如皮肤病变分割,样本数量(如皮肤镜图像)通常是有限的。训练样本的不足会严重降低DCNNs的性能。为了解决这个问题,使用预训练的VGG16网络(Simonyan & Zisserman, 2014)作为编码器。VGG16网络是在ImageNet (Deng et al ., 2009)上进行预训练的,ImageNet拥有数千万个数据。在我们的研究中,VGG16网络的所有全连接层都被删除,以保持我们的模型轻量级和高效。这种方法帮助我们的模型即使使用少量的皮肤镜图像也能达到最先进的性能。
为了进一步解决皮肤病灶分割中存在的病灶边界模糊、病灶形状不规则等干扰因素,提出了解码器中的注意协同机制,增强模型的特征表示能力。
具体来说,该解码器包含两个平行的注意机制(即空间注意和通道注意)和一个协同模块。
空间注意模块收集特征的空间关系,使我们的模型能够在特征图中定位信息部分(即病变区域),从而减少各种干扰因素带来的负面影响。渠道注意路径强调渠道维度的判别特征,抑制不相关信息。它通过使用边界相关信息选择性地增强特征,缓解了对比度低的病变边界模糊问题。与U-Net类似(Ronneberger et al, 2015),采用跳接连接将编码器与相应的解码器连接起来。最后,协同模块自适应调整两个关注模块的贡献,以获得精确的特征表示,用于逐像素预测皮肤病变分割
损失函数使用的是多元交叉熵损失;
数据集使用ISIC2017,ISIC2018,PH2.
数据预处理:
对于数据预处理,将三个数据集中的所有图像重新采样到192 × 256像素,每个像素值在[0,1]中归一化。我们使用192 × 256的图像大小,因为训练集中的大多数图像的高宽比为3:4 (Yuan et al, 2017)。
并对所有的图像进行伽玛校正,其值设置为1.6。
为了扩大训练集的数量,采用Keras 2.2.4提供的在线数据增强过程。具体来说,以下三个操作应用于原始图像:随机缩放(80% ~ 120%的宽度和高度),随机旋转(0 ~ 270◦),水平和垂直移动。在训练过程中对原始图像进行变换。因此,图像被实时增强,直到模型训练完成。
为了减少随机性的影响,与其他方法进行公平的比较,将训练集随机分成9:1的比例,得到训练集和验证集。我们在三个数据集上重复实验15次,并报告15次评估的平均值以进行比较。