MedMamba论文精读

名称:MEDMAMBA: VISION MAMBA FOR MEDICAL IMAGE

CLASSIFICATION

医学分类的medmamba

作者:Yubiao Yue,Zhenzhang Li

日期:2024年4月2日 ArXiv

代码地址:https://github.com/YubiaoYue/MedMamba

摘要:近年来,基于CNN与Transformer的模型被广泛应用于各种医学图像分类。但CNN在远程建模方面的局限性使其无法有效提取医学图像中的特征,Transformers受其二次计算复杂度的阻碍。最近的研究表明,Mamba中的状态空间模型SSM可以有效建模远程相互作用,同时保持线性计算复杂度。文章提出一种医学图像分类的MedMamba。更具体地说,文章介绍了一种新的SS-Conv-SSM模块。该模块结合卷积层的局部特征提取能力与SSM捕获远程依赖性的能力相结合,从而对不同模态的医学图像进行建模。文章在14个大型公开数据集进行实验,并在私有数据集进行大量实验。

介绍:以往CNN,Transformer方法存在一定局限性,目前研究SSM状态空间模型成为主流。目前该方法应用于自然图像分类,医学图像分割等任务。

前面阅读过Vmamba文章为在自然图像领域进行分类分割等任务,本文为专门为医学图像分类任务在该模型基础上进行的改进。

文章主要贡献在于:

1)提出了MedMamba,标志着第一次探索的潜在应用的SSM为基础的模型在医学图像与不同的方式。

2)在五个数据集上进行了综合实验,结果表明MedMamba表现出相当的竞争力。

3)为医学图像分类任务建立了一个新的基线,并为未来开发更高效,更有效的基于SSM的人工智能算法和应用系统提供了有价值的见解。

图1显示了MedMamba的整体架构。包括一个补丁嵌入层,ss_conv_SSM Block和补丁合并层。在MedMamba中,Patch Embedding层首先将输入图像x ∈ RH × W × 3划分为大小为4 × 4的非重叠区块,从而将图像的维度映射到C(这里,C的默认值设置为96),从而得到嵌入图像x ′。随后,在将其馈送到MedMamba的主干之前,通过使用层归一化对x '进行归一化。主干由四个阶段组成。应该注意的是,在前三个阶段的输出之后使用合并层,以减少输入特征的高度和宽度,同时增加通道的数量。我们在四个阶段中使用[2,2,4,2] SS—Conv—SSM块,每个阶段具有[C,2C,4C,8C]通道。

SS 2D

这是VMamba 提出的2D选择性扫描(SS 2D),这是SS-Conv-SSM块的核心。SS 2D由三个部分组成:扫描扩展操作、S6块和扫描合并操作。如图2所示,扫描扩展操作将输入图像沿着四个不同的方向(左上至右下、右下至左上、右上至左下和左下至右上)展开为序列。然后,这些序列由S6模块进行特征提取处理,确保来自各个方向的信息被彻底扫描,从而捕获不同的特征。随后,如图2所示,扫描合并操作对来自四个方向的序列求和并合并,将输出图像恢复为与输入相同的大小。从Mamba 衍生的S6块通过基于输入调整SSM的参数,在S4 之上引入了选择性机制。这使得模型能够区分和保留相关信息,同时过滤掉不相关的信息。

SS-Conv-SSM Block

SS-Conv-SSM Block是MedMamba的核心模块,如图1所示。总的来说,SS-Conv-SSM是一个简单的双分支模块。在SS-Conv-SSM块中没有太多花哨的技巧。首先,使用通道分裂操作将模块输入分裂成具有相同大小的两个子输入。接下来,将两个子输入馈送到两个分支(即,Conv-分支和SSM-分支)模块。在Conv分支中,简单地使用连续卷积层来建模输入的局部特征。在SSM分支中,首先使用层Normalization层来处理输入。值得注意的是,输入在经过层规范化之后被分为两个分支。在SSM的第一分支中,输入通过线性层和激活函数。在SSM-分支的第二分支中,输入被馈送到2D选择性扫描模块(SS 2D)[22]中,以在通过线性层、深度可分离卷积和激活函数之后进行进一步的特征提取。然后,使用层规范化对特征进行规范化,并将其与第一个分支的输出逐个元素相乘,合并两个分支。最后,使用线性层进行特征混合,得到SSM分支的输出。

数据集:

PAD-UFES-20皮肤病数据集

Cervical lymph node lesion ultrasound images颈部淋巴结病变超声图像

FETAL_PLANES_DB胎儿_平面_DB[29](缩写为胎儿-US)。

Covid19-Pneumonia-Normal Chest X-Ray Images Covid 19-哥伦比亚-正常胸部X线图像

Kavsir Dataset

Large-scale otoscopy dataset 大规模耳镜检查数据集

Medmnist2D

实验效果:

结论:在这项工作中,我们首先将基于SSM的模型引入到医学图像分类任务中,并提出MedMamba作为基线。为了使MedMamba能够有效地对具有细粒度特征的各种医学图像进行建模,我们使用卷积层和SSM的混合模块构建了MedMamba。为了充分证明MedMamba在医学分类任务中的潜力直接受益于SSM,我们没有使用任何预训练策略或数据增强策略。在MedMamba上使用大量具有不同模态的医学数据集进行了广泛的实验。实验结果表明,MedMamba在医学图像分类任务中具有优异的性能。此外,与医学分类任务中广泛使用的各种架构相比,MedMamba表现出强大的竞争力。此外,我们将未来的工作总结为以下几点:1)我们将进一步探索和测试MedMamba在其他成像技术获得的医学数据集上的潜力,并优化MedMamba的内部架构。2)我们将进一步使用可解释的人工智能来分析MedMamba的决策机制。此外,还应研究MedMamba的推理速度和模型参数大小对实际应用的影响。3)由于SSM在高效长序列建模方面的优势,进一步研究MedMamba在某些高分辨率医学图像(如病理图像)中的性能可能是有益的。4)我们将尝试使用MedMamba的主干作为编码器或解码器,以探索其在更高级的医学图像任务中的应用潜力,例如医学图像分割,医学对象检测,医学图像配准和医学图像重建。

### 关于密码学学术论文精读 对于希望深入了解密码学并进行学术研究的学生来说,选择合适的学术资源至关重要。为了更好地理解密码学领域内的高级概念和技术细节,可以从以下几个方面入手: #### 1. 寻找高质量的学术期刊和会议论文 优质的学术成果通常发表在国际知名的安全性和隐私保护类顶级会议上,如IEEE Symposium on Security and Privacy (S&P),ACM Conference on Computer and Communications Security (CCS),以及Journal of Cryptology等。 这些平台上的文章经过严格的同行评审过程,代表了当前最先进水平的研究方向和发展趋势[^1]。 #### 2. 掌握必要的数学工具 由于密码学是一门高度依赖数学理论支撑的技术科学,在阅读高水平的学术文献之前,确保已经掌握了足够的离散数学、代数结构、概率论等方面的知识是非常重要的。这有助于更深刻地理解和分析各种加密算法的设计原理及其安全性证明方法。 #### 3. 利用在线资源辅助学习 除了传统的纸质书籍外,互联网上也有许多优秀的开源项目和教程可以帮助初学者快速入门。例如CTF Wiki - 密码学提供了丰富的实践案例供爱好者参考;而像Coursera这样的教育平台上则开设了许多由顶尖大学教授讲授的相关课程[^2]。 #### 4. 注重科研能力训练 当准备撰写自己的研究成果时,需要注意遵循正确的写作规范来构建清晰明了的文章框架。一个好的题目应当能够准确概括全文的核心观点,并且具有一定的吸引力以便引起读者的兴趣。同时也要注意避免使用模糊不清或者过于宽泛/狭窄的概念作为主题名称[^3]。 ```python import requests from bs4 import BeautifulSoup def fetch_paper_titles(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') titles = [] for item in soup.select('.paper-title'): title_text = item.get_text(strip=True) if not any(word.lower() in ['tutorial', 'survey'] for word in title_text.split()): titles.append(title_text) return titles[:5] url = "https://example.com/cryptography-papers" print(fetch_paper_titles(url)) ``` 此段Python代码展示了如何通过网络爬虫技术获取指定网站上的最新密码学研究论文列表,并筛选掉综述性质的内容只保留原创性工作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值