python 3.9.7中各三方库匹配版本

由于还未使用虚拟环境,就使用最原始的base环境来配置三方库,千辛万苦后,终于不报错了,记录一下各个三方库的版本:
matplotlib 3.5.2
numpy:1.22.4
seaborn 0.11.2
pandas 1.4.4
scikit-learn 1.3.1
TensorFlow 2.7.4
keras 2.7.0
readme-renderer=35.0
scipy:1.12.0
numba:0.58.0

### 解决NumPy版本冲突的方法 当面对NumPy版本冲突时,可以采取多种策略来解决问题。一种常见的方式是创建虚拟环境以便隔离依赖关系[^1]。 #### 使用虚拟环境管理包版本 通过`virtualenv`或`conda`创建独立的开发环境能够有效防止全局环境中不同项目的相互干扰。对于Conda而言: ```bash conda create --name myenv python=3.8 conda activate myenv ``` 而对于Virtualenv,则可执行如下命令: ```bash python -m venv myenv source myenv/bin/activate # Linux 或 macOS 下激活环境 myenv\Scripts\activate # Windows下激活环境 ``` 一旦进入特定环境下工作,就可以安全地安装所需的软件包及其精确版本而不会影响其他项目中的配置[^2]。 #### 安装指定版本NumPy 如果已知某个具体的应用程序需要某一特定版本NumPy,可以直接利用pip工具指明要安装的确切版本号。例如,在某些情况下为了使TensorFlow与Numba共存良好,可能需降级至较旧版次的NumPy: ```bash pip install numpy==1.19.5 ``` 这一步骤同样适用于解决MXNet与其他库之间的兼容性问题;比如针对MXNet的要求,应该选择与其相适应的Pandas和NumPy组合版本[^4]。 #### 升级或回滚现有安装 有时候升级到最新稳定发行版或是退回到之前使用的可靠版本也能缓解因API变更引起的功能失效现象。可以通过简单修改上述pip指令完成操作: ```bash pip install --upgrade numpy # 将 NumPy 更新到最新版本 pip install "numpy<1.20" # 安装低于1.20系列的所有版本之一 ``` 值得注意的是,在调整任何主要组件之后都应当进行全面测试以确认预期行为未被破坏,并且整个应用程序仍然保持正常运作状态[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值