Day76 乘积最大子数组

本文介绍了一种使用Java解决LeetCode中最大乘积子数组问题的方法,通过动态规划避免了服务器崩溃的风险。核心思路在于,当前位置为负数时,最大值可能为与前面最小值之积,最小值可能为与前面最大值之积。代码中展示了如何遍历数组并更新最大值和最小值,最终找到最大乘积。动态规划和滚动数组优化的空间复杂度降低到了O(1)。
摘要由CSDN通过智能技术生成

给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积

https://leetcode-cn.com/problems/maximum-product-subarray/

示例1:

输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。

示例2:

输入: [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。

Java解法

思路:

  • 好像只需要一趟遍历即可,也不需要动态规划什么的,搞错了还把服务器搞崩了
  • 还是要注意条件,子数组的长度是1到len的长度,在这里踩了个坑
  • 参考官方解使用动态规划处理
    • 当前位置为负数时,最大值为与前面最小值之积,最小值为与前面最大值之积,正数则相反
    • 长度为1,当前位置最大最小均为 第0 个
    • 长度为2,当前位置最大为
    • 长度为3,最大数连续正/负数为偶数,积
    • 长度为N,与F(N-1)交互得出当前位置的最大最小值
    • 遍历最大值集得出最大值
  • 思考中的问题
    • 无法决定当前位置的最大值,其实细化下来,都是考虑包含当前位置时的最大值,最小值,而我一直考虑当前位置的最大值,这样导致前后没有逻辑链条而出错
    • 还是思考太少了
package sj.shimmer.algorithm.m4_2021;

/**
 * Created by SJ on 2021/4/13.
 */

class D76 {
    public static void main(String[] args) {
//        System.out.println(maxProduct(new int[]{2,3,-2,4}));
//        System.out.println(maxProduct(new int[]{-2,0,-1}));
        System.out.println(maxProduct(new int[]{1,2,-1,-2,2,1,-2,1,4,-5,4}));
    }
    public static int maxProduct(int[] nums) {
        if (nums == null||nums.length==0) {
            return 0;
        }
        int length = nums.length;
        if (length ==1) {
            return nums[0];
        }
        int[] max = new int[length];
        int[] min = new int[length];
        System.arraycopy(nums, 0, max, 0, length);//当前位置的值作为默认值
        System.arraycopy(nums, 0, min, 0, length);//当前位置的值作为默认值
        for (int i = 1; i < length; ++i) {
            //当前位置为负数时,最大值可能为与前面最小值之积
            max[i] = Math.max(nums[i] * max[i - 1], Math.max(nums[i], nums[i] * min[i - 1]));
            //当前位置为负数时,最小值可能为与前面最大值之积
            min[i] = Math.min(nums[i] * min[i - 1], Math.min(nums[i], nums[i] * max[i - 1]));
        }
        int result = max[0];
        for (int i : max) {
            result = Math.max(result, i);
        }
        return result;
    }
}

官方解

https://leetcode-cn.com/problems/maximum-product-subarray/solution/cheng-ji-zui-da-zi-shu-zu-by-leetcode-solution/

  1. 动态规划

    参上

    • 时间复杂度: O(n)
  • 空间复杂度: O(n)
  1. 滚动数组优化

    计算时不需要存储许多之前的最大最小值,再更新时重复利用已存储的空间即可

    优化空间复杂度: O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值