##现在你总共有 n 门课需要选,记为 0 到 n-1。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。
可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。
https://leetcode-cn.com/problems/course-schedule-ii/
示例1:
输入: 2, [[1,0]]
输出: [0,1]
解释: 总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。
示例2:
输入: 4, [[1,0],[2,0],[3,1],[3,2]]
输出: [0,1,2,3] or [0,2,1,3]
解释: 总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。
提示:
输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法。
你可以假定输入的先决条件中没有重复的边。
这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
拓扑排序也可以通过 BFS 完成。
Java解法
思路:
- 之前做过Day82 课程表,这里参考同样的解法,通过深度搜索+回溯+状态记录来完成
- 状态记录当前位置是否被扫描过,已处理;处理中;未处理
对于访问 已是处理中的情况,表明有环,不能完成学习- 这里有个问题,上次是判断能不能遍历完成,这次要记录遍历顺序,有点逗比,考虑用hashmap分别记录不同结点遍历结束的情况, 然而实际上不用这么操作,参考官方解,遍历到最后位置的结点,直接放入结果数组的最后结点即可
class Solution {
List<List<Integer>> learnRule;
int[] learnStatus; //0未处理;1处理中;2已处理
int[] result;
boolean canLearn = true;
// 栈下标
int index;
public int[] findOrder(int numCourses, int[][] prerequisites) {
learnRule = new ArrayList<>();
learnStatus = new int[numCourses];
result = new int[numCourses];
for (int i = 0; i < numCourses; i++) {
learnRule.add(new ArrayList<>());
}
index = numCourses - 1;
for (int[] prerequisite : prerequisites) {
learnRule.get(prerequisite[1]).add(prerequisite[0]);
}
for (int i = 0; i < learnStatus.length && canLearn; i++) {
if (learnStatus[i] == 0) {
dfs(i);
}
}
if (!canLearn) {
return new int[0];
}
return result;
}
private void dfs(int i) {
learnStatus[i] = 1;
//对i进行深度搜索
for (Integer integer : learnRule.get(i)) {
if (learnStatus[integer] == 1) {
//有环
canLearn = false;
return;
} else if(learnStatus[integer] == 0) {
dfs(integer);
if (!canLearn) {
return;
}
}
}
learnStatus[i] = 2;
// 将节点入栈
result[index--] = i;
}
}
官方解
https://leetcode-cn.com/problems/course-schedule-ii/solution/ke-cheng-biao-ii-by-leetcode-solution/
-
深度优先搜索:参考解,牛逼牛逼,图结构不太熟悉,但dfs可以好好用用
-
广度优先搜索:入度操作可以参考一下