最小二乘法高斯曲线拟合学习笔记

本文介绍了最小二乘法的概念和线性最小二乘的基本公式,阐述了如何通过最小化误差平方和来实现曲线拟合。接着探讨了高斯曲线拟合的原理,包括一维高斯函数的定义及其在MATLAB中的实现。内容覆盖了从线性到非线性的拟合方法。
摘要由CSDN通过智能技术生成

1. 最小二乘法

概念

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法可用于曲线拟合。最小二乘法

线性最小二乘的基本公式

考虑超定方程组(未知数小于方程个数):
在这里插入图片描述
其中m代表有m个等式,n代表有 n 个未知数。方程组满足:m>n
方程组的向量形式:
在这里插入图片描述
其中
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值