- 博客(27)
- 收藏
- 关注
原创 非线性数据拟合(最小二乘法Gauss-Newton&Levenberg-Marquardt(LM))matlab and C++
拟合后参数 abcd = [3.42361, 1.62509, 4.79206, -9.93481] VS 准确原参 t_0 = [1, 2, 5, -10];拟合后参数 abcd = [0.95660, 1.9995, 5.13014, -10.00388] VS 准确原参 t_0 = [1, 2, 5, -10];拟合后参数 tt = [3.42619, 1.62460, 4.79166, -9.93472] VS 准确原参 t_0 = [1, 2, 5, -10];c++ 代码待更新…
2024-08-30 16:36:28 579
原创 mingw安装以及c++.Dll生成和导出
即可生成,a .dll .def 等文件。其次创建.cpp文件,定义函数。注意:多余空格会报错!其中类的导入实例.h。
2024-06-04 20:12:11 305
原创 Windows下VS配置C++绘图库(基于matplotlibcpp)
【代码】Windows下VS配置C++绘图库(基于matplotlibcpp)
2024-06-04 17:25:33 387
原创 enumerate, zip -- Python
a, b = [19, 21, 16, 17, 18], [19, 21, 16, 17, 18]for c, (d, f) in enumerate(zip(a, b)): print(c, (d, f)) ## 0 (19, 19)1 (21, 21)2 (16, 16)3 (17, 17)4 (18, 18)g, (h, e) = enumerate((a, b))print(g, (h, e))## (0, [19, 21, 16, 17, 18]) (1,
2021-12-14 10:01:24 583
原创 Broadcast 机制——numpy
几种情况:1.末维不等时, 报错。a = np.arange(12).reshape(4, 1, 3) b = np.arange(6).reshape(3, 2)print(a, "\n", b, "\n", a+b)ValueError: operands could not be broadcast together with shapes (4,1,3) (3,2) 2.末维等。维数不等时,当有某一维维度数不等时报错。2 =!3a = np.arange(24).reshape(4
2021-11-29 17:47:44 994
翻译 计算两点间连线的倾斜角--python
计算两点间连线的倾斜角.这种方法非常的有用.Math.atan2()函数返回点(x,y)和原点(0,0)之间直线的倾斜角.那么如何计算任意两点间直线的倾斜角呢?只需要将两点x,y坐标分别相减得到一个新的点(x2-x1,y2-y1).然后利用他求出角度就可以了.使用下面的一个转换可以实现计算出两点间连线的夹角.Math.atan2(y2-y1,x2-x1)不过这样我们得到的是一个弧度值,在一般情况下我们需要把它转换为一个角度.下面我们用一段代码来测试一下这样的转换.//测试,计算点(3,3)和(5
2021-11-29 10:40:26 4263
原创 For 的列表推导式
list_1 = [(x1,y1) for x1 in range(5) for y1 in range(3)] ###print(“list_1”)## list_1: [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2)]list_1_1 = []for i in range(5): for j in
2021-11-23 10:29:31 181
原创 np.where和*np.where---numpy
b = np.random.randint(0, 10, (4, 3)) print(b)"""[[5 2 2] [1 3 0] [8 9 0] [1 4 8]]"""print(np.where(b>5))## (array([2, 2, 3], dtype=int64), array([0, 1, 2], dtype=int64))print(*np.where(b>5))## [2 2 3] [0 1 2]
2021-11-22 09:29:49 1217
原创 opencv cv2.LUT()---Python
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入import cv2x = np.array([[2, 5, 5, 7], [1, 5, 7,
2021-11-21 22:11:14 7037
原创 list,array, asarray, ndarray
import numpy as npdata0 = [[1,1,1],[1,1,1],[1,1,1]] # dtype = 'list'data1 = np.array([[1.,1.,1.],[1.,1.,1.],[1.,1.,1.]])data1_1 = np.array(data0)data2 = np.asarray(data0)print(data2, data2.dtype)print(data2 is data1_1)data3 = np.ones((3, 3)) # 默认生
2021-09-29 21:13:40 117
原创 代数与概率##范数
##范数, linalg.norm() \\x\\p=(usm(x^p))^(1/p):p范数import numpy as npimport numpy.linalg as LA #Numpy中的线性代数库x = np.arange(0, 1, 0.1)x1 = LA.norm(x, 1)x2 = LA.norm(x, 2)xa = LA.norm(x, np.inf)print(x)print(x1, x2, xa)##特征值分解 lina
2021-05-31 22:19:09 128
原创 矩阵Matrix
#矩阵Matrix (np.linalg函数)import numpy as np nd14 = np.arange(9).reshape([3, 3])print(np.transpose(nd14))#转置a = np.arange(12).reshape([3, 4])b = np.arange(8).reshape([4, 2])print('============')print(a)print('============')print(b)print('==========
2021-05-31 22:12:39 164
原创 #存取元素
#存取元素import numpy as npnp.random.seed(2018)nd11 = np.random.random([10])print(nd11)print('============')print(nd11[3]) #取第4个数print('============')print(nd11[3:7]) #取一段4-7print('============')print(nd11[1:6:2])#间隔取数print('============')print(n
2021-05-31 22:11:32 125
原创 To create the ndarray
#NunmPy ndarray and ufunc#some ways to create the ndarray (N-dimension array object)import numpy as nplist1 = [3.14, 2.17, 0, 1.2] #列表nd1 = np.array(list1)print(nd1)print(type(nd1))print('================')#lists form to demensions ndarraylist2 =
2021-05-31 22:10:20 78
原创 合并np.c_[]. np.r_[] np.append() np.concatenate()展平np.ravel()
#np.ravel() #np.c_[]. np.r_[]import numpy as npa = np.array([1, 2, 4])f = np.array([3, 2, 6])c_con = np.c_[a, f] #列堆叠(列相加),行相等。np.c_[3*1, 3*1]=3*2r_con = np.r_[a, f] #行堆叠(行相加),列相等。np.r_[3*1, 3*1]=6*1print(c_con)print(r_con)print("===============
2021-05-06 19:07:27 245
原创 np中的0,1轴。方括号。np.sum函数
#np中的0,1轴。方括号。np.sum函数。import numpy as npa = np.array([1, 2, 4]) #此为(3,)阵,为列阵?b = np.array([[5, 3, 6]]) #此为(1, 3)阵,为行阵 print(a.shape, b.shape)print("===================")c = np.array([[1, 2, 6],[2, 2, 4],[5, 2, 1],[1, 4, 2]])print(c)print(c.shape
2021-05-06 17:36:00 202
原创 python.np.reshape
#reshape函数x=np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 1]])#要是矩阵形式print(’\n’)print(x.reshape(2, 6))print(’\n’)print(x.reshape(1,-1))#1行,列匹配print(’\n’)print(x.reshape(-1,2))#2列,行匹配[[1 2 3 4 5 6][7 8 9 1 2 1]][[1 2 3 4 5 6 7 8 9 1 2 1]][[1
2021-04-29 20:22:18 123
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人