11. 盛最多水的容器

给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。

图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

 

示例:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49

-----------------------------------------------------------------------------------------------------------------------------

 

解析:

原地址:https://leetcode-cn.com/problems/two-sum/solution/sheng-zui-duo-shui-de-rong-qi-by-leetcode/

双指针法:

这种方法背后的思路在于,两线段之间形成的区域总是会受到其中较短那条长度的限制。此外,两线段距离越远,得到的面积就越大。

我们在由线段长度构成的数组中使用两个指针,一个放在开始,一个置于末尾。 此外,我们会使用变量 maxareamaxarea 来持续存储到目前为止所获得的最大面积。 在每一步中,我们会找出指针所指向的两条线段形成的区域,更新 maxareamaxarea,并将指向较短线段的指针向较长线段那端移动一步。

查看下面的例子将有助于你更好地理解该算法:


这种方法如何工作?

最初我们考虑由最外围两条线段构成的区域。现在,为了使面积最大化,我们需要考虑更长的两条线段之间的区域。如果我们试图将指向较长线段的指针向内侧移动,矩形区域的面积将受限于较短的线段而不会获得任何增加。但是,在同样的条件下,移动指向较短线段的指针尽管造成了矩形宽度的减小,但却可能会有助于面积的增大。因为移动较短线段的指针会得到一条相对较长的线段,这可以克服由宽度减小而引起的面积减小。

(这段很重要,精髓所在,也就是 height[start_V] <= height[end_V] ? start_V++ : end_V--;这句代码的解释)

暴力解法代码:

//暴力解法超时
int maxArea(vector<int>& height) 
{
	int height_size = height.size();
	if (height_size <= 0)
	{
		return 0;
	}
	int max_Area = 0;
	for (int i = 0; i < height_size; i++)
	{
		for (int j = i + 1; j < height_size; j++)
		{
			int max_height = height[i] >= height[j] ? height[j] : height[i];
			if ((j - i)*max_height >= max_Area)
			{
				max_Area = (j - i)*max_height;
			}
		}
	}
	return max_Area;
}

双指针:

class Solution {
public:
    int maxArea(vector<int>& height) {
        int res = 0, start_V = 0, end_V = height.size() - 1;
        while (start_V<end_V)
        {
            res = max(res, (min(height[start_V], height[end_V])) * (end_V - start_V));
            height[start_V] <= height[end_V] ? start_V++ : end_V--;//这个一开始没想到,具体解释看解析
        }
        return res;
    }
};

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值