给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
-----------------------------------------------------------------------------------------------------------------------------
解析:
原地址:https://leetcode-cn.com/problems/two-sum/solution/sheng-zui-duo-shui-de-rong-qi-by-leetcode/
双指针法:
这种方法背后的思路在于,两线段之间形成的区域总是会受到其中较短那条长度的限制。此外,两线段距离越远,得到的面积就越大。
我们在由线段长度构成的数组中使用两个指针,一个放在开始,一个置于末尾。 此外,我们会使用变量 maxareamaxarea 来持续存储到目前为止所获得的最大面积。 在每一步中,我们会找出指针所指向的两条线段形成的区域,更新 maxareamaxarea,并将指向较短线段的指针向较长线段那端移动一步。
查看下面的例子将有助于你更好地理解该算法:
这种方法如何工作?
最初我们考虑由最外围两条线段构成的区域。现在,为了使面积最大化,我们需要考虑更长的两条线段之间的区域。如果我们试图将指向较长线段的指针向内侧移动,矩形区域的面积将受限于较短的线段而不会获得任何增加。但是,在同样的条件下,移动指向较短线段的指针尽管造成了矩形宽度的减小,但却可能会有助于面积的增大。因为移动较短线段的指针会得到一条相对较长的线段,这可以克服由宽度减小而引起的面积减小。
(这段很重要,精髓所在,也就是 height[start_V] <= height[end_V] ? start_V++ : end_V--;这句代码的解释)
暴力解法代码:
//暴力解法超时
int maxArea(vector<int>& height)
{
int height_size = height.size();
if (height_size <= 0)
{
return 0;
}
int max_Area = 0;
for (int i = 0; i < height_size; i++)
{
for (int j = i + 1; j < height_size; j++)
{
int max_height = height[i] >= height[j] ? height[j] : height[i];
if ((j - i)*max_height >= max_Area)
{
max_Area = (j - i)*max_height;
}
}
}
return max_Area;
}
双指针:
class Solution {
public:
int maxArea(vector<int>& height) {
int res = 0, start_V = 0, end_V = height.size() - 1;
while (start_V<end_V)
{
res = max(res, (min(height[start_V], height[end_V])) * (end_V - start_V));
height[start_V] <= height[end_V] ? start_V++ : end_V--;//这个一开始没想到,具体解释看解析
}
return res;
}
};