给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
思路:
1.暴力递归 找到所有的边界组合
public int maxArea(int[] height) {
int res = 0;
for (int i = 0; i < height.length; i++) {
for (int j = i + 1; j < height.length; j++) {
int h=Math.min(height[i], height[j]);
res=Math.max(res, h*(j-i));
}
}
return res;
}
2.双指针靠拢 矩形面积等于(right-left)*高度 在指针靠拢的过程中 宽度减小 只有让小的指针移动 才可能使高变大
用双指针left=0和right=height.length-1 left和right确定一个面积时 为了寻找可能更大的
public int maxArea(int[] height) {
int res = 0;
int left=0;
int right=height.length-1;
while (left<=right) {
//每次求的最大面积 较短的边作为高 乘以宽度
res=Math.max(res,Math.min(height[left], height[right])*(right-left));
if (height[left]<height[right]) {
left++;
}else {
right--;
}
}
return res;
}