给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
你的算法时间复杂度必须是 O(log n) 级别。
如果数组中不存在目标值,返回 [-1, -1]。
示例 1:
输入: nums = [5,7,7,8,8,10], target = 8
输出: [3,4]
示例 2:
输入: nums = [5,7,7,8,8,10], target = 6
输出: [-1,-1]
---------------------------------------------------------------------------------------------------------------------------------------
思路:
使用两次二分查找法,第一次找到左边界,第二次调用找到右边界即可
1、第一次找第一个不小于target的数
2、第二次找搜第一个大于target的数
参考文章:https://blog.csdn.net/wang13342322203/article/details/96576109
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> bp(2,-1);
if( nums.empty())return bp;
int nLeft =0,nRight = nums.size()-1;
while (nLeft < nRight)//求的是第一个不小于target的数
{
int mid = (nLeft + nRight) / 2;
if (nums[mid] < target)//先判断右侧,因为左侧可能会出现相等情况,记住以后做二分法也是先判断右侧
nLeft = mid + 1;
else nRight = mid ;
}
if (nums[nRight] != target) return bp;
bp[0] = nRight;
nRight = nums.size();
while (nLeft < nRight)//求的是第一个大于target的数
{
int mid = (nLeft + nRight) / 2;
if (nums[mid] <= target)
nLeft = mid + 1;
else nRight = mid ;
}
bp[1] = nRight - 1;
return bp;
}
};
问:第二个解法找右边境,end设成n而不是n-1是因为什么?
答:因为两次二分搜索法的搜索目的不同,第一次是要搜第一个不小于target的数,相当于lower_bound,第二次要搜第一个大于target的数,相当于upper_bound,举个例子来说,比如当前数组是{8},我们要搜索8,如果left和right都初始化为0,while循环没法进入;但你可能会说为啥不改为while(left <= right),这样的话right = mid这块可能会陷入死循环。