GCN(Graph Convolutional Network)——总结

GCN是一种针对图结构数据的卷积网络,避免了将图转化为线性结构。主要内容包括GCN技术(如拉普拉斯矩阵和傅立叶变换)、主要优点(如局部特征和参数共享)、应用(如文本分类)以及GraphSAGE等变体。图卷积通过邻居节点的聚合来提取特征,适用于不断演化的图结构,尤其在归纳学习任务中有优势。
摘要由CSDN通过智能技术生成

Graph Convolutional Network

对于图结构,不采用将图结构转换成线性结构表示。直接对图结构进行表示。
CNN处理的图像或者视频数据中像素点(pixel)是排列成很整齐的矩阵(Euclidean Structure)。网络结构(Non Euclidean Structure)就是图论中抽象意义上的拓扑图。

为什么要使用GCN?

由于拓扑图每个节点度不一样,无法用同一尺寸的卷积和进行卷积运算,又希望在拓扑图上有效提取空间特征。
1) 局部特征
2)参数共享: 卷积核只有k个参数,k 远小于N,大大降低了模型复杂程度,每次卷积会将中心顶点的k 阶邻居节点进行加权求和。同阶邻居参数共享,不同阶邻居参数不共享。

GCN 主要技术:

拉普拉斯矩阵
拉普拉斯矩阵谱分解

GCN 的逻辑:
采用傅立叶变换,使得卷积操作变得可行。 h ( x ) = f ( g ( x ) ) = F − 1 ( F ( f ) . F ( g ) ) h(x)=f(g(x))=F^{-1}(F(f).F(g)) h(x)=f(g(x))=F1(F(f).F(g)).只需要定义 graph 上的 fourier 变换,就可以定义出 graph 上的 convolution 变换。
傅立叶变换: F ( x ) F(x) F(x)

傅立叶变换的逆: F − 1 ( x ) F^{-1}(x) F1(x)

拉普拉斯算子是二阶导数,Graph 一阶导数是两个节点间的差异,Graph 二阶导数是两个节点差异的导数。L = D-A = 度矩阵-邻接矩阵。 标准化后 L = I − D − 1 / 2 ∗ A ∗ D − 1 / 2 = U ∗ Λ ∗ U

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值